Intelligent Algorithms For Packing And Cutting Problem


Download Intelligent Algorithms For Packing And Cutting Problem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intelligent Algorithms For Packing And Cutting Problem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Intelligent Algorithms for Packing and Cutting Problem


Intelligent Algorithms for Packing and Cutting Problem

Author: Yunqing Rao

language: en

Publisher: Springer Nature

Release Date: 2022-10-03


DOWNLOAD





This book investigates in detail the two-dimensional packing and cutting problems in the field of operations research and management science. It introduces the mathematical models and intelligent solving algorithms for these problems, as well as their engineering applications. Most intelligent methods reported in this book have already been applied in reality, which can provide reference for the engineers. The presented novel methods for the two-dimensional packing problem provide a new way to solve the problem for researchers interested in operations research or computer science. This book also introduces three new variants of packing problems and their solving methods, which offer a different research direction. The book is intended for undergraduate and graduate students who are interested in the solving methods for packing and cutting problems, researchers investigating the application of intelligent algorithms, scientists studying the theory of the operations research and CAM software developers working on integration of packing and cutting problem.

Natural Intelligence for Scheduling, Planning and Packing Problems


Natural Intelligence for Scheduling, Planning and Packing Problems

Author: Raymond Chiong

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-09-30


DOWNLOAD





Scheduling, planning and packing are ubiquitous problems that can be found in a wide range of real-world settings. These problems transpire in a large variety of forms, and have enormous socio-economic impact. For many years, significant work has been devoted to automating the processes of scheduling, planning and packing using different kinds of methods. However, poor scaling and the lack of flexibility of many of the conventional methods coupled with the fact that most of the real-world problems across the application areas of scheduling, planning and packing nowadays tend to be of large scale, dynamic and full of complex dependencies have made it necessary to tackle them in unconventional ways. This volume, "Natural Intelligence for Scheduling, Planning and Packing Problems", is a collection of numerous natural intelligence based approaches for solving various kinds of scheduling, planning and packing problems. It comprises 12 chapters which present many methods that draw inspiration from nature, such as evolutionary algorithms, neural-fuzzy system, particle swarm algorithms, ant colony optimisation, extremal optimisation, raindrop optimisation, and so on. Problems addressed by these chapters include freight transportation, job shop scheduling, flowshop scheduling, electrical load forecasting, vehicle routing, two-dimensional strip packing, network configuration and forest planning, among others. Along with solving these problems, the contributing authors present a lively discussion of the various aspects of the nature-inspired algorithms utilised, providing very useful and important new insights into the research areas.

Advances in Swarm Intelligence, Part I


Advances in Swarm Intelligence, Part I

Author: Ying Tan

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-05-26


DOWNLOAD





The two-volume set (LNCS 6728 and 6729) constitutes the refereed proceedings of the International Conference on Swarm Intelligence, ICSI 2011, held in Chongqing, China, in June 2011. The 143 revised full papers presented were carefully reviewed and selected from 298 submissions. The papers are organized in topical sections on theoretical analysis of swarm intelligence algorithms, particle swarm optimization, applications of pso algorithms, ant colony optimization algorithms, bee colony algorithms, novel swarm-based optimization algorithms, artificial immune system, differential evolution, neural networks, genetic algorithms, evolutionary computation, fuzzy methods, and hybrid algorithms - for part I. Topics addressed in part II are such as multi-objective optimization algorithms, multi-robot, swarm-robot, and multi-agent systems, data mining methods, machine learning methods, feature selection algorithms, pattern recognition methods, intelligent control, other optimization algorithms and applications, data fusion and swarm intelligence, as well as fish school search - foundations and applications.