Integrated Vehicle Dynamics And Control

Download Integrated Vehicle Dynamics And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integrated Vehicle Dynamics And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Integrated Vehicle Dynamics and Control

A comprehensive overview of integrated vehicle system dynamics exploring the fundamentals and new and emerging developments This book provides a comprehensive coverage of vehicle system dynamics and control, particularly in the area of integrated vehicle dynamics control. The book consists of two parts, (1) development of individual vehicle system dynamic model and control methodology; and (2) development of integrated vehicle dynamic model and control methodology. The first part focuses on investigating vehicle system dynamics and control according to the three directions of vehicle motions, including longitudinal, vertical, and lateral. Corresponding individual control systems, e.g. Anti-lock Brake System (ABS), Active Suspension, Electric Power Steering System (EPS), are introduced and developed respectively. Particular attention is paid in the second part of the book to develop integrated vehicle dynamic control system. Integrated vehicle dynamics control system is an advanced system that coordinates all the chassis control systems and components to improve the overall vehicle performance including safety, comfort, and economy. Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The research topic on integrated vehicle dynamics control is investigated comprehensively and intensively in the book through both theoretical analysis and experimental study. In this part, two types of control architectures, i.e. centralized and multi-layer, have been developed and compared to demonstrate their advantages and disadvantages. Integrated vehicle dynamics control is a hot topic in automotive research; this is one of the few books to address both theory and practice of integrated systems Comprehensively explores the research area of integrated vehicle dynamics and control through both theoretical analysis and experimental study Addresses a full range of vehicle system topics including tyre dynamics, chassis systems, control architecture, 4 wheel steering system and design of control systems using Linear Matrix Inequality (LMI) Method
Integrated Vehicle Dynamics and Control

A comprehensive overview of integrated vehicle system dynamics exploring the fundamentals and new and emerging developments This book provides a comprehensive coverage of vehicle system dynamics and control, particularly in the area of integrated vehicle dynamics control. The book consists of two parts, (1) development of individual vehicle system dynamic model and control methodology; and (2) development of integrated vehicle dynamic model and control methodology. The first part focuses on investigating vehicle system dynamics and control according to the three directions of vehicle motions, including longitudinal, vertical, and lateral. Corresponding individual control systems, e.g. Anti-lock Brake System (ABS), Active Suspension, Electric Power Steering System (EPS), are introduced and developed respectively. Particular attention is paid in the second part of the book to develop integrated vehicle dynamic control system. Integrated vehicle dynamics control system is an advanced system that coordinates all the chassis control systems and components to improve the overall vehicle performance including safety, comfort, and economy. Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The research topic on integrated vehicle dynamics control is investigated comprehensively and intensively in the book through both theoretical analysis and experimental study. In this part, two types of control architectures, i.e. centralized and multi-layer, have been developed and compared to demonstrate their advantages and disadvantages. Integrated vehicle dynamics control is a hot topic in automotive research; this is one of the few books to address both theory and practice of integrated systems Comprehensively explores the research area of integrated vehicle dynamics and control through both theoretical analysis and experimental study Addresses a full range of vehicle system topics including tyre dynamics, chassis systems, control architecture, 4 wheel steering system and design of control systems using Linear Matrix Inequality (LMI) Method
Vehicle Dynamics and Control

Vehicle Dynamics and Control: Advanced Methodologies features the latest information on advanced dynamics and vehicle motion control, including a comprehensive overview of passenger cars and articulated vehicles, fundamentals, and emerging developments. This book provides a unified, balanced treatment of advanced approaches to vehicle dynamics and control. It proceeds to cover advanced vehicle control strategies, such as identification and estimation, adaptive nonlinear control, new robust control techniques, and soft computing. Other topics, such as the integrated control of passenger cars and articulated heavy vehicles, are also discussed with a significant amount of material on engineering methodology, simulation, modeling, and mathematical verification of the systems. This book discusses and solves new challenges in vehicle dynamics and control problems and helps graduate students in the field of automotive engineering as well as researchers and engineers seeking theoretical/practical design procedures in automotive control systems. - Provides a vast spectrum of advanced vehicle dynamics and control systems topics and current research trends - Provides an extensive discussion in some advanced topics on commercial vehicles, such as dynamics and control of semitrailer carrying liquid, integrated control system design, path planning and tracking control in the autonomous articulated vehicle