Integral Equation Methods For Electromagnetics

Download Integral Equation Methods For Electromagnetics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integral Equation Methods For Electromagnetics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Integral Equation Methods for Electromagnetics

Details the methods for solving electromagnetic wave problems using the integral equation formula. This text limits the use of mathematics to the level of standard undergraduate students and explains all the derivations and transformations of equations in detail.
Integral Equation Methods for Electromagnetic and Elastic Waves

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
Integral Equation Methods for Electromagnetics

Integral equations appear in most applied areas and are as important as differential equations. In fact, many problems can be formulated as either a differential or an integral equation. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a growth of interest in this topic in the 1980s due to increased computing power. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Integral Equation Methods for Electromagnetics delves insight into the development and use of integral equation methods for electromagnetic analysis. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current development. Surface integral equation based methods have been widely used for the analysis of electromagnetic (EM) scattering and radiation. Commonly used integral equations for perfectly electrical conductors (PECs) include electric field integral equation (EFIE), magnetic integral equation (MFIE) and combined field integral equation (CFIE) and their modified forms. Algorithms for the numerical solution of continuum electromagnetic field problems are based either on differential or integral formulations. The book examines the special advantages of integral equations over differential equations, explores some of the difficulties involved and suggests that, in the context of more advanced problems.This book will appeal to students, practitioners as well as academic researchers with a detailed and up-to-date coverage of integral methods in electromagnetics.