Innovations In Multi Agent Systems And Application 1


Download Innovations In Multi Agent Systems And Application 1 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Innovations In Multi Agent Systems And Application 1 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Innovations in Multi-Agent Systems and Application – 1


Innovations in Multi-Agent Systems and Application – 1

Author: Dipti Srinivasan

language: en

Publisher: Springer

Release Date: 2010-07-17


DOWNLOAD





In today’s world, the increasing requirement for emulating the behavior of real-world applications for achieving effective management and control has necessitated the usage of advanced computational techniques. Computational intelligence-based techniques that combine a variety of problem solvers are becoming increasingly pervasive. The ability of these methods to adapt to the dynamically changing environment and learn in an online manner has increased their usefulness in simulating intelligent behaviors as observed in humans. These intelligent systems are able to handle the stochastic and uncertain nature of the real-world problems. Application domains requiring interaction of people or organizations with different, even possibly conflicting goals and proprietary information handling are growing exponentially. To efficiently handle these types of complex interactions, distributed problem solving systems like multiagent systems have become a necessity. The rapid advancements in network communication technologies have provided the platform for successful implementation of such intelligent agent-based problem solvers. An agent can be viewed as a self-contained, concurrently executing thread of control that encapsulates some state and communicates with its environment, and possibly other agents via message passing. Agent-based systems offer advantages when independently developed components must interoperate in a heterogenous environment. Such agent-based systems are increasingly being applied in a wide range of areas including telecommunications, Business process modeling, computer games, distributed system control and robot systems.

Innovations in Multi-Agent Systems and Application - 1


Innovations in Multi-Agent Systems and Application - 1

Author: Dipti Srinivasan

language: en

Publisher:

Release Date: 2010


DOWNLOAD





This book provides an overview of multi-agent systems and several applications that have been developed for real-world problems. Multi-agent systems is an area of distributed artificial intelligence that emphasizes the joint behaviors of agents with some degree of autonomy and the complexities arising from their interactions. Multi-agent systems allow the subproblems of a constraint satisfaction problem to be subcontracted to different problem solving agents with their own interest and goals. This increases the speed, creates parallelism and reduces the risk of system collapse on a single point of failure. Different multi-agent architectures, that are tailor-made for a specific application are possible. They are able to synergistically combine the various computational intelligent techniques for attaining a superior performance. This gives an opportunity for bringing the advantages of various techniques into a single framework. It also provides the freedom to model the behavior of the system to be as competitive or coordinating, each having its own advantages and disadvantages.

Innovations in Multi-Agent Systems and Application – 1


Innovations in Multi-Agent Systems and Application – 1

Author: Dipti Srinivasan

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-08-10


DOWNLOAD





This book provides an overview of multi-agent systems and several applications that have been developed for real-world problems. Multi-agent systems is an area of distributed artificial intelligence that emphasizes the joint behaviors of agents with some degree of autonomy and the complexities arising from their interactions. Multi-agent systems allow the subproblems of a constraint satisfaction problem to be subcontracted to different problem solving agents with their own interest and goals. This increases the speed, creates parallelism and reduces the risk of system collapse on a single point of failure. Different multi-agent architectures, that are tailor-made for a specific application are possible. They are able to synergistically combine the various computational intelligent techniques for attaining a superior performance. This gives an opportunity for bringing the advantages of various techniques into a single framework. It also provides the freedom to model the behavior of the system to be as competitive or coordinating, each having its own advantages and disadvantages.