Information Theoretic Methods For Estimating Of Complicated Probability Distributions

Download Information Theoretic Methods For Estimating Of Complicated Probability Distributions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Theoretic Methods For Estimating Of Complicated Probability Distributions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Information-Theoretic Methods for Estimating of Complicated Probability Distributions

Mixing up various disciplines frequently produces something that are profound and far-reaching. Cybernetics is such an often-quoted example. Mix of information theory, statistics and computing technology proves to be very useful, which leads to the recent development of information-theory based methods for estimating complicated probability distributions. Estimating probability distribution of a random variable is the fundamental task for quite some fields besides statistics, such as reliability, probabilistic risk analysis (PSA), machine learning, pattern recognization, image processing, neural networks and quality control. Simple distribution forms such as Gaussian, exponential or Weibull distributions are often employed to represent the distributions of the random variables under consideration, as we are taught in universities. In engineering, physical and social science applications, however, the distributions of many random variables or random vectors are so complicated that they do not fit the simple distribution forms at al. Exact estimation of the probability distribution of a random variable is very important. Take stock market prediction for example. Gaussian distribution is often used to model the fluctuations of stock prices. If such fluctuations are not normally distributed, and we use the normal distribution to represent them, how could we expect our prediction of stock market is correct? Another case well exemplifying the necessity of exact estimation of probability distributions is reliability engineering. Failure of exact estimation of the probability distributions under consideration may lead to disastrous designs. There have been constant efforts to find appropriate methods to determine complicated distributions based on random samples, but this topic has never been systematically discussed in detail in a book or monograph. The present book is intended to fill the gap and documents the latest research in this subject. Determining a complicated distribution is not simply a multiple of the workload we use to determine a simple distribution, but it turns out to be a much harder task. Two important mathematical tools, function approximation and information theory, that are beyond traditional mathematical statistics, are often used. Several methods constructed based on the two mathematical tools for distribution estimation are detailed in this book. These methods have been applied by the author for several years to many cases. They are superior in the following senses: (1) No prior information of the distribution form to be determined is necessary. It can be determined automatically from the sample; (2) The sample size may be large or small; (3) They are particularly suitable for computers. It is the rapid development of computing technology that makes it possible for fast estimation of complicated distributions. The methods provided herein well demonstrate the significant cross influences between information theory and statistics, and showcase the fallacies of traditional statistics that, however, can be overcome by information theory. Key Features: - Density functions automatically determined from samples - Free of assuming density forms - Computation-effective methods suitable for PC- density functions automatically determined from samples- Free of assuming density forms- Computation-effective methods suitable for PC
Computational Methods for Modeling of Nonlinear Systems by Anatoli Torokhti and Phil Howlett

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation - Non-Lagrange interpolation - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering
Probabilistic Graphical Models

This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.