Information Based Methods For Neuroimaging Analyzing Structure Function And Dynamics


Download Information Based Methods For Neuroimaging Analyzing Structure Function And Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Based Methods For Neuroimaging Analyzing Structure Function And Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Information-based methods for neuroimaging: analyzing structure, function and dynamics


Information-based methods for neuroimaging: analyzing structure, function and dynamics

Author: Jesus M. Cortés

language: en

Publisher: Frontiers Media SA

Release Date: 2015-05-07


DOWNLOAD





The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability distributions rather than on specific expectations, can account for all possible non-linearities present in the data in a model-independent fashion. Mutual Information-like methods can also be applied on interacting dynamical variables described by time-series, thus addressing the uncertainty reduction (or information) in one variable by conditioning on another set of variables. In the last years, different Information-based methods have been shown to be flexible and powerful tools to analyze neuroimaging data, with a wide range of different methodologies, including formulations-based on bivariate vs multivariate representations, frequency vs time domains, etc. Apart from methodological issues, the information bit as a common unit represents a convenient way to open the road for comparison and integration between different measurements of neuroimaging data in three complementary contexts: Structural Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain activity. Applications are ubiquitous, starting from resting state in healthy subjects to modulations of consciousness and other aspects of pathophysiology. Mutual Information-based methods have provided new insights about common-principles in brain organization, showing the existence of an active default network when the brain is at rest. It is not clear, however, how this default network is generated, the different modules are intra-interacting, or disappearing in the presence of stimulation. Some of these open-questions at the functional level might find their mechanisms on their structural correlates. A key question is the link between structure and function and the use of structural priors for the understanding of the functional connectivity measures. As effective connectivity is concerned, recently a common framework has been proposed for Transfer Entropy and Granger Causality, a well-established methodology originally based on autoregressive models. This framework can open the way to new theories and applications. This Research Topic brings together contributions from researchers from different backgrounds which are either developing new approaches, or applying existing methodologies to new data, and we hope it will set the basis for discussing the development and validation of new Information-based methodologies for the understanding of brain structure, function, and dynamics.

Computational Science and Its Applications – ICCSA 2018


Computational Science and Its Applications – ICCSA 2018

Author: Osvaldo Gervasi

language: en

Publisher: Springer

Release Date: 2018-07-03


DOWNLOAD





The five volume set LNCS 10960 until 10964 constitutes the refereed proceedings of the 18th International Conference on Computational Science and Its Applications, ICCSA 2018, held in Melbourne, Australia, in July 2018. Apart from the general tracks, ICCSA 2018 also includes 34 international workshops in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality.

Neuroimaging


Neuroimaging

Author: Sanja Josef Golubic

language: en

Publisher: BoD – Books on Demand

Release Date: 2019-04-03


DOWNLOAD





Neuroimaging provides a valuable noninvasive window into the human neural system and is used in fundamental and clinical research. Imaging techniques are essential for understanding spontaneous neural activity and brain mechanisms engaged in the processing of external inputs, memory formation, and cognition. Modern imaging modalities make it possible to visualize memory processes within the brain and to create images of its structure and function. Scientists and technologists are joining forces to pave the way for improving imaging technologies and methods, data analysis, and the application of imaging to investigate the wide spectra of neurological diseases, neuropsychological disorders, and aging. Imaging techniques are essential for the identification of biological markers of the earliest stages of neurodiseases and the development of new therapies. This book intends to provide the reader with a short overview of the current achievements in the state-of-the-art imaging modality methods, their highlights, and limitations in neuroscience research and clinical applications. The current state of in-vivo neuroimaging methods in the context of the understanding and diagnosis of mental disorders and relation to the mind is also discussed in a modern compact format, featuring the latest and most relevant research results.


Recent Search