Information Based Inversion And Processing With Applications

Download Information Based Inversion And Processing With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Based Inversion And Processing With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Information-Based Inversion and Processing with Applications

Information-Based Inversion and Processing with Applications examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology. Chapter 1 introduces basic concepts including: probability theory (expectation operator and ensemble statistics), elementary principles of parameter estimation, Fourier and z-transform essentials, and issues of orthogonality. In Chapter 2, the linear treatment of time series is provided. Particular attention is paid to Wold decomposition theorem and time series models (AR, MA, and ARMA) and their connection to seismic data analysis problems. Chapter 3 introduces concepts of Information theory and contains a synopsis of those topics that are used throughout the book. Examples are entropy, conditional entropy, Burg's maximum entropy spectral estimator, and mutual information. Chapter 4 provides a description of inverse problems first from a deterministic point of view, then from a probabilistic one. Chapter 5 deals with methods to improve the signal-to-noise ratio of seismic records. Concepts from previous chapters are put in practice for designing prediction error filters for noise attenuation and high-resolution Radon operators. Chapter 6 deals with the topic of deconvolution and the inversion of acoustic impedance. The first part discusses band-limited extrapolation assuming a known wavelet and considers the issue of wavelet estimation. The second part deals with sparse deconvolution using various 'entropy' type norms. Finally, Chapter 7 introduces recent topics of interest to the authors. The emphasis of this book is on applied seismology but researchers in the area of global seismology, and geophysical signal processing and inversion will find material that is relevant to the ubiquitous problem of estimating complex models from a limited number of noisy observations. - Non-conventional approaches to data processing and inversion are presented - Important problems in the area of seismic resolution enhancement are discussed - Contains research material that could inspire graduate students and their supervisors to undertake new research directions in applied seismology and geophysical signal processing
Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation

The interest in seismic stratigraphic techniques to interpret reflection datasets is well established. The advent of sophisticated subsurface reservoir studies and 4D monitoring, for optimising the hydrocarbon production in existing fields, does demonstrate the importance of the 3D seismic methodology. The added value of reflection seismics to the petroleum industry has clearly been proven over the last decades. Seismic profiles and 3D cubes form a vast and robust data source to unravel the structure of the subsurface. It gets nowadays exploited in ever greater detail. Larger offsets and velocity anisotropy effects give for instance access to more details on reservoir flow properties like fracture density, porosity and permeability distribution, Elastic inversion and modelling may tell something about the change in petrophysical parameters. Seismic investigations provide a vital tool for the delineation of subtle hydrocarbon traps. They are the basis for understanding the regional basin framework and the stratigraphic subdivision. Seismic stratigraphy combines two very different scales of observation: the seismic and well-control. The systematic approach applied in seismic stratigraphy explains why many workers are using the principles to evaluate their seismic observations. The here presented modern geophysical techniques allow more accurate prediction of the changes in subsurface geology. Dynamics of sedimentary environments are discussed with its relation to global controling factors and a link is made to high-resolution sequence stratigraphy. 'Seismic Stratigraphy Basin Analysis and Reservoir Characterisation' summarizes basic seismic interpretation techniques and demonstrates the benefits of intergrated reservoir studies for hydrocarbon exploration. Topics are presented from a practical point of view and are supported by well-illustrated case histories. The reader (student as well as professional geophysicists, geologists and reservoir engineers) is taken from a basic level to more advanced study techniques.* Overview reflection seismic methods and its limitations.* Link between basic seismic stratigraphic principles and high resolution sequence stratigraphy.* Description of various techniques for seismic reservoir characterization and synthetic modelling.* Overview nversion techniques, AVO and seismic attributes analysis.
Coding and Decoding: Seismic Data

Currently, the acquisition of seismic surveys is performed as a sequential operation in which shots are computed separately, one after the other. This approach is similar to that of multiple-access technology, which is widely used in cellular communications to allow several subscribers to share the same telephone line. The cost of performing various shots simultaneously is almost identical to that of one shot; thus, the savings in time and money expected from using the multishooting approach for computing seismic surveys compared to the current approach are enormous. By using this approach, the long-standing problem of simulating a three-dimensional seismic survey can be reduced to a matter of weeks and not years, as is currently the case. - Investigates how to collect, stimulate, and process multishooting data - Addresses the improvements in seismic characterization and resolution one can expect from multishooting data - Aims to educate the oil and gas exploration and production business of the benefits of multishooting data, and to influence their day-to-day surveying techniques