Information And Coding Theory

Download Information And Coding Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information And Coding Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Information and Coding Theory

Author: Gareth A. Jones
language: en
Publisher: Springer Science & Business Media
Release Date: 2000-06-26
This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.
Introduction to Coding and Information Theory

Author: Steven Roman
language: en
Publisher: Springer Science & Business Media
Release Date: 1996-11-26
This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.
Information and Coding Theory

Author: Gareth A. Jones
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
As this Preface is being written, the twentieth century is coming to an end. Historians may perhaps come to refer to it as the century of information, just as its predecessor is associated with the process of industrialisation. Successive technological developments such as the telephone, radio, television, computers and the Internet have had profound effects on the way we live. We can see pic tures of the surface of Mars or the early shape of the Universe. The contents of a whole shelf-load of library books can be compressed onto an almost weight less piece of plastic. Billions of people can watch the same football match, or can keep in instant touch with friends around the world without leaving home. In short, massive amounts of information can now be stored, transmitted and processed, with surprising speed, accuracy and economy. Of course, these developments do not happen without some theoretical ba sis, and as is so often the case, much of this is provided by mathematics. Many of the first mathematical advances in this area were made in the mid-twentieth century by engineers, often relying on intuition and experience rather than a deep theoretical knowledge to lead them to their discoveries. Soon the math ematicians, delighted to see new applications for their subject, joined in and developed the engineers' practical examples into wide-ranging theories, com plete with definitions, theorems and proofs.