Infinite Dimensional Groups And Algebras In Quantum Physics

Download Infinite Dimensional Groups And Algebras In Quantum Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Infinite Dimensional Groups And Algebras In Quantum Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Infinite Dimensional Groups and Algebras in Quantum Physics

Author: Johnny T. Ottesen
language: en
Publisher: Springer Science & Business Media
Release Date: 1995-04-18
The idea of writing this book appeared when I was working on some problems related to representations of physically relevant infinite - mensional groups of operators on physically relevant Hilbert spaces. The considerations were local, reducing the subject to dealing with representations of infinite-dimensional Lie algebras associated with the associated groups. There is a large number of specialized articles and books on parts of this subject, but to our suprise only a few represent the point of view given in this book. Moreover, none of the written material was self-contained. At present, the subject has not reached its final form and active research is still being undertaken. I present this subject of growing importance in a unified manner and by a fairly simple approach. I present a route by which students can absorb and understand the subject, only assuming that the reader is familliar with functional analysis, especially bounded and unbounded operators on Hilbert spaces. Moreover, I assume a little basic knowledge of algebras , Lie algebras, Lie groups, and manifolds- at least the definitions. The contents are presented in detail in the introduction in Chap. The manuscript of this book has been succesfully used by some advanced graduate students at Aarhus University, Denmark, in their "A-exame'. I thank them for comments.
Infinite Dimensional Groups and Algebras in Quantum Physics

Author: Johnny T. Ottesen
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-09-11
The idea of writing this book appeared when I was working on some problems related to representations of physically relevant infinite - mensional groups of operators on physically relevant Hilbert spaces. The considerations were local, reducing the subject to dealing with representations of infinite-dimensional Lie algebras associated with the associated groups. There is a large number of specialized articles and books on parts of this subject, but to our suprise only a few represent the point of view given in this book. Moreover, none of the written material was self-contained. At present, the subject has not reached its final form and active research is still being undertaken. I present this subject of growing importance in a unified manner and by a fairly simple approach. I present a route by which students can absorb and understand the subject, only assuming that the reader is familliar with functional analysis, especially bounded and unbounded operators on Hilbert spaces. Moreover, I assume a little basic knowledge of algebras , Lie algebras, Lie groups, and manifolds- at least the definitions. The contents are presented in detail in the introduction in Chap. The manuscript of this book has been succesfully used by some advanced graduate students at Aarhus University, Denmark, in their "A-exame'. I thank them for comments.
Infinite Dimensional Lie Algebras And Groups

Contents:Integrable Representation of Kac-Moody Algebras: Results and Open Problems (V Chari & A Pressley)Existence of Certain Components in the Tensor Product of Two Integrable Highest Weight Modules for Kac-Moody Algebras (SKumar)Frobenius Action on the B-Cohomology (O Mathieu)Certain Rank Two Subsystems of Kac-Moody Root Systems (J Morita)Lie Groups Associated to Kac-Moody Lie Algebras: An Analytic Approach (E Rodriguez-Carrington)Almost Split-K-Forms of Kac-Moody Algebras (G Rousseau)Global Representations of the Diffeomorphism Groups of the Circle (F Bien)Path Space Realization of the Basic Representation of An(1) (E Date et al)Boson-Fermion Correspondence Over (C De Concini et al)Classification of Modular Invariant Representations of Affine Algebras (V G Kac & M Wakimoto)Standard Monomial Theory for SL2 (V Lakshmibai & C S Seshadri)Some Results on Modular Invariant Representations (S Lu)Current Algebras in 3+1 Space-Time Dimensions (J Mickelson)Standard Representations of An(1) (M Primc)Representations of the Algebra Uq(sI(2)), q-Orthogonal Polynomials and Invariants of Links (A N Kirillov & N Yu Reshetikhin)Infinite Super Grassmannians and Super Plücker Equations (M J Bergvelt)Drinfeld-Sokolov Hierarchies and t-Functions (H J Imbens)Super Boson-Fermion Correspondence of Type B (V G Kac & J W van de Leur)Prym Varieties and Soliton Equations (T Shiota)Polynomial Solutions of the BKP Hierarchy and Projective Representations of Symmetric Groups (Y You)Toward Generalized Macdonald's Identities (D Bernard)Conformal Theories with Non-Linearly Extended Virasoro Symmetries and Lie Algebra Classification (A Bilal & J-LGervais)Extended Conformal Algebras from Kac-Moody Algebras (P Bouwknegt)Meromorphic Conformal Field Theory (P Goddard)Local Extensions of the U(1) Current Algebra and Their Positive Energy Representations (R R Paunov & I T Todorov)Conformal Field Theory on Moduli Family of Stable Curves with Gauge Symmetries (A Tsuchiya & Y Yamada) Readership: Mathematicians and mathematical physicists