Inequivalent Representations Of Canonical Commutation And Anti Commutation Relations

Download Inequivalent Representations Of Canonical Commutation And Anti Commutation Relations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inequivalent Representations Of Canonical Commutation And Anti Commutation Relations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations

Canonical commutation relations (CCR) and canonical anti-commutation relations (CAR) are basic principles in quantum physics including both quantum mechanics with finite degrees of freedom and quantum field theory. From a structural viewpoint, quantum physics can be primarily understood as Hilbert space representations of CCR or CAR. There are many interesting physical phenomena which can be more clearly understood from a representation–theoretical viewpoint with CCR or CAR. This book provides an introduction to representation theories of CCR and CAR in view of quantum physics. Particular emphases are put on the importance of inequivalent representations of CCR or CAR, which may be related to characteristic physical phenomena. The topics presented include general theories of representations of CCR and CAR with finite and infinite degrees of freedom, the Aharonov–Bohm effect, time operators, quantum field theories based on Fock spaces, Bogoliubov transformations, and relations of infinite renormalizations with inequivalent representations of CCR. This book can be used as a text for an advanced topics course in mathematical physics or mathematics.
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)

This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
Chemistry, Quantum Mechanics and Reductionism

Author: H. Primas
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-11
The purpose of this book is to provide a deeper insight into the modern theories of molecular matter. It incorporates the most important developments which have taken place during the last decades and reflects the modern trend to abstraction. At the present state of the art we have acquired a fairly good knowledge of "how to. compute" small molecules us ing the methods of quantum chemistry. Yet, in spite of many statements to the contrary and many superficial discussions, the theoretical basis of chemistry and biology is not safely in our hands. It is all but impossible to summarize the modern developments of the theory of matter in nontechnical language. But I hope that I can give some feeling for the problems, the intellectual excitements and the wor ries of some theoreticians. I know very well that such an enterprise is a dangerous adventure and that one says that a clever scientist should take care of his reputation by barricading himself behind the safe wall of his speciality. This volume is not meant to be a textbook; in many respects it has complementary goals. For good and bad reasons, most textbooks ignore the historical and philosophical aspects and go ahead on the basis of crude simplifications; many even lie like the devil and do not shrink from naive indoctrination. Some sections of this book can be read as commentaries on our standard texts, they are intended to stir the waters with controversy.