Industrial Case Study On The Integration Of Sysml And Autosar With Triple Graph Grammars

Download Industrial Case Study On The Integration Of Sysml And Autosar With Triple Graph Grammars PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Industrial Case Study On The Integration Of Sysml And Autosar With Triple Graph Grammars book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Industrial Case Study on the Integration of SysML and AUTOSAR with Triple Graph Grammars

Author: Giese, Holger
language: en
Publisher: Universitätsverlag Potsdam
Release Date: 2012
During the overall development of complex engineering systems different modeling notations are employed. For example, in the domain of automotive systems system engineering models are employed quite early to capture the requirements and basic structuring of the entire system, while software engineering models are used later on to describe the concrete software architecture. Each model helps in addressing the specific design issue with appropriate notations and at a suitable level of abstraction. However, when we step forward from system design to the software design, the engineers have to ensure that all decisions captured in the system design model are correctly transferred to the software engineering model. Even worse, when changes occur later on in either model, today the consistency has to be reestablished in a cumbersome manual step. In this report, we present in an extended version of [Holger Giese, Stefan Neumann, and Stephan Hildebrandt. Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent. In Gregor Engels, Claus Lewerentz, Wilhelm Schäfer, Andy Schürr, and B. Westfechtel, editors, Graph Transformations and Model Driven Enginering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of Lecture Notes in Computer Science, pages 555-579. Springer Berlin / Heidelberg, 2010.] how model synchronization and consistency rules can be applied to automate this task and ensure that the different models are kept consistent. We also introduce a general approach for model synchronization. Besides synchronization, the approach consists of tool adapters as well as consistency rules covering the overlap between the synchronized parts of a model and the rest. We present the model synchronization algorithm based on triple graph grammars in detail and further exemplify the general approach by means of a model synchronization solution between system engineering models in SysML and software engineering models in AUTOSAR which has been developed for an industrial partner. In the appendix as extension to [19] the meta-models and all TGG rules for the SysML to AUTOSAR model synchronization are documented.
Theories and Intricacies of Information Security Problems

Author: Anne V. D. M. Kayem
language: en
Publisher: Universitätsverlag Potsdam
Release Date: 2013
Keine Angaben
Scalable Compatibility for Embedded Real-time Components Via Language Progressive Timed Automata

Author: Stefan Neumann
language: en
Publisher: Universitätsverlag Potsdam
Release Date: 2013
The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis.