In Situ Visualization For Computational Science

Download In Situ Visualization For Computational Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get In Situ Visualization For Computational Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
In Situ Visualization for Computational Science

This book provides an overview of the emerging field of in situ visualization, i.e. visualizing simulation data as it is generated. In situ visualization is a processing paradigm in response to recent trends in the development of high-performance computers. It has great promise in its ability to access increased temporal resolution and leverage extensive computational power. However, the paradigm also is widely viewed as limiting when it comes to exploration-oriented use cases. Furthermore, it will require visualization systems to become increasingly complex and constrained in usage. As research efforts on in situ visualization are growing, the state of the art and best practices are rapidly maturing. Specifically, this book contains chapters that reflect state-of-the-art research results and best practices in the area of in situ visualization. Our target audience are researchers and practitioners from the areas of mathematics computational science, high-performance computing, and computer science that work on or with in situ techniques, or desire to do so in future.
Computational Science – ICCS 2018

The three-volume set LNCS 10860, 10861 and 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers
Methods in Computational Science

Computational methods are an integral part of most scientific disciplines, and a rudimentary understanding of their potential and limitations is essential for any scientist or engineer. This textbook introduces computational science through a set of methods and algorithms, with the aim of familiarizing the reader with the field’s theoretical foundations and providing the practical skills to use and develop computational methods. Centered around a set of fundamental algorithms presented in the form of pseudocode, this self-contained textbook extends the classical syllabus with new material, including high performance computing, adjoint methods, machine learning, randomized algorithms, and quantum computing. It presents theoretical material alongside several examples and exercises and provides Python implementations of many key algorithms. Methods in Computational Science is for advanced undergraduate and graduate-level students studying computer science and data science. It can also be used to support continuous learning for practicing mathematicians, data scientists, computer scientists, and engineers in the field of computational science. It is appropriate for courses in advanced numerical analysis, data science, numerical optimization, and approximation theory.