Improper Riemann Integrals

Download Improper Riemann Integrals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Improper Riemann Integrals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Improper Riemann Integrals

Improper Riemann Integrals is the first book to collect classical and modern material on the subject for undergraduate students. The book gives students the prerequisites and tools to understand the convergence, principal value, and evaluation of the improper/generalized Riemann integral. It also illustrates applications to science and engineering
Improper Riemann Integrals

The scope of this book is the improper or generalized Riemann integral and infinite sum (series). The reader will study its convergence, principal value, evaluation and application to science and engineering. Improper Riemann integrals and infinite sums are interconnected. In the new edition, the author has involved infinite sums more than he did in the first edition. Apart from having computed and listed a large number of improper integrals and infinite sums, we have also developed the necessary theory and various ways of evaluating them or proving their divergence. Questions, problems and applications involving various improper integrals and infinite sums (series) of numbers emerge in science and application very often. Their complete presentations and all rigorous proofs would require taking the graduate-level courses on these subjects. Here their statements are adjusted to a level students of all levels can understand and use them efficiently as powerful tools in a large list of problems and applications.
Measure and Integration Theory

This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon measures on Polish or locally compact spaces. With the main results being Luzin's theorem, the Riesz representation theorem, the Portmanteau theorem, and a characterization of locally compact spaces which are Polish, this chapter is a true invitation to study topological measure theory. The text addresses graduate students, who wish to learn the fundamentals in measure and integration theory as needed in modern analysis and probability theory. It will also be an important source for anyone teaching such a course.