Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms

Download Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms

Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
Advances in Computers

Advances in Computers, Volume 126 presents innovations in computer hardware, software, theory, design and applications, with this updated volume including new chapters on VLSI for Super-Computing: Creativity in R+D from Applications and Algorithms to Masks and Chips, Bulk Bitwise Execution Model in Memory: Mechanisms, Implementation, and Evaluation, Embracing the Laws of Physics: Three Reversible Models of Computation, WSNs in Environmental Monitoring: Data Acquisition and Dissemination Aspects, Energy efficient implementation of tensor operations using dataflow paradigm for machine learning, and A Run-Time Job Scheduling Algorithm for Cluster Architectures with DataFlow Accelerators. - Contains novel subject matter that is relevant to computer science - Includes the expertise of contributing authorsPresents an easy to comprehend writing style
Parallel Computing is Everywhere

The most powerful computers work by harnessing the combined computational power of millions of processors, and exploiting the full potential of such large-scale systems is something which becomes more difficult with each succeeding generation of parallel computers. Alternative architectures and computer paradigms are increasingly being investigated in an attempt to address these difficulties. Added to this, the pervasive presence of heterogeneous and parallel devices in consumer products such as mobile phones, tablets, personal computers and servers also demands efficient programming environments and applications aimed at small-scale parallel systems as opposed to large-scale supercomputers. This book presents a selection of papers presented at the conference: Parallel Computing (ParCo2017), held in Bologna, Italy, on 12 to 15 September 2017. The conference included contributions about alternative approaches to achieving High Performance Computing (HPC) to potentially surpass exa- and zetascale performances, as well as papers on the application of quantum computers and FPGA processors. These developments are aimed at making available systems better capable of solving intensive computational scientific/engineering problems such as climate models, security applications and classic NP-problems, some of which cannot currently be managed by even the most powerful supercomputers available. New areas of application, such as robotics, AI and learning systems, data science, the Internet of Things (IoT), and in-car systems and autonomous vehicles were also covered. As always, ParCo2017 attracted a large number of notable contributions covering present and future developments in parallel computing, and the book will be of interest to all those working in the field.