Implementation Of B Splines In A Conventional Finite Element Framework

Download Implementation Of B Splines In A Conventional Finite Element Framework PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Implementation Of B Splines In A Conventional Finite Element Framework book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Implementation of B-splines in a Conventional Finite Element Framework

The use of B-spline interpolation functions in the finite element method (FEM) is not a new subject. B-splines have been utilized in finite elements for many reasons. One reason is the higher continuity of derivatives and smoothness of B-splines. Another reason is the possibility of reducing the required number of degrees of freedom compared to a conventional finite element analysis. Furthermore, if B-splines are utilized to represent the geometry of a finite element model, interfacing a finite element analysis program with existing computer aided design programs (which make extensive use of B-splines) is possible. While B-splines have been used in finite element analysis due to the aforementioned goals, it is difficult to find resources that describe the process of implementing B-splines into an existing finite element framework. Therefore, it is necessary to document this methodology. This implementation should conform to the structure of conventional finite elements and only require exceptions in methodology where absolutely necessary. One goal is to implement B-spline interpolation functions in a finite element framework such that it appears very similar to conventional finite elements and is easily understandable by those with a finite element background. The use of B-spline functions in finite element analysis has been studied for advantages and disadvantages. Two-dimensional B-spline and standard FEM have been compared. This comparison has addressed the accuracy as well as the computational efficiency of B-spline FEM. Results show that for a given number of degrees of freedom, B-spline FEM can produce solutions with lower error than standard FEM. Furthermore, for a given solution time and total analysis time B-spline FEM will typically produce solutions with lower error than standard FEM. However, due to a more coupled system of equations and larger elemental stiffness matrix, B-spline FEM will take longer per degree of freedom for solution and assembly times than standard FEM. Three-dimensional B-spline FEM has also been validated by the comparison of a three-dimensional model with plane-strain boundary conditions to an equivalent two-dimensional model using plane strain conditions.
Finite Element Methods with B-splines

Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.
Curves and Surfaces

This volume constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Curves and Surfaces, held in Avignon, in June 2010. The conference had the overall theme: "Representation and Approximation of Curves and Surfaces and Applications". The 39 revised full papers presented together with 9 invited talks were carefully reviewed and selected from 114 talks presented at the conference. The topics addressed by the papers range from mathematical foundations to practical implementation on modern graphics processing units and address a wide area of topics such as computer-aided geometric design, computer graphics and visualisation, computational geometry and topology, geometry processing, image and signal processing, interpolation and smoothing, scattered data processing and learning theory and subdivision, wavelets and multi-resolution methods.