Image Based Computing For Food And Health Analytics Requirements Challenges Solutions And Practices

Download Image Based Computing For Food And Health Analytics Requirements Challenges Solutions And Practices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Image Based Computing For Food And Health Analytics Requirements Challenges Solutions And Practices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Image Based Computing for Food and Health Analytics: Requirements, Challenges, Solutions and Practices

Increase in consumer awareness of nutritional habits has placed automatic food analysis in the spotlight in recent years. However, food-logging is cumbersome and requires sufficient knowledge of the food item consumed. Additionally, keeping track of every meal can become a tedious task. Accurately documenting dietary caloric intake is crucial to manage weight loss, but also presents challenges because most of the current methods for dietary assessment must rely on memory to recall foods eaten. Food understanding from digital media has become a challenge with important applications in many different domains. Substantial research has demonstrated that digital imaging accurately estimates dietary intake in many environments and it has many advantages over other methods. However, how to derive the food information effectively and efficiently remains a challenging and open research problem. The provided recommendations could be based on calorie counting, healthy food and specific nutritional composition. In addition, if we also consider a system able to log the food consumed by every individual along time, it could provide health-related recommendations in the long-term. Computer Vision specialists have developed new methods for automatic food intake monitoring and food logging. Fourth Industrial Revolution [4.0 IR] technologies such as deep learning and computer vision robotics are key for sustainable food understanding. The need for AI based technologies that allow tracking of physical activities and nutrition habits are rapidly increasing and automatic analysis of food images plays an important role. Computer vision and image processing offers truly impressive advances to various applications like food analytics and healthcare analytics and can aid patients in keeping track of their calorie count easily by automating the calorie counting process. It can inform the user about the number of calories, proteins, carbohydrates, and other nutrients provided by each meal. The information is provided in real-time and thus proves to be an efficient method of nutrition tracking and can be shared with the dietician over the internet, reducing healthcare costs. This is possible by a system made up of, IoT sensors, Cloud-Fog based servers and mobile applications. These systems can generate data or images which can be analyzed using machine learning algorithms. Image Based Computing for Food and Health Analytics covers the current status of food image analysis and presents computer vision and image processing based solutions to enhance and improve the accuracy of current measurements of dietary intake. Many solutions are presented to improve the accuracy of assessment by analyzing health images, data and food industry based images captured by mobile devices. Key technique innovations based on Artificial Intelligence and deep learning-based food image recognition algorithms are also discussed. This book examines the usage of 4.0 industrial revolution technologies such as computer vision and artificial intelligence in the field of healthcare and food industry, providing a comprehensive understanding of computer vision and intelligence methodologies which tackles the main challenges of food and health processing. Additionally, the text focuses on the employing sustainable 4 IR technologies through which consumers can attain the necessary diet and nutrients and can actively monitor their health. In focusing specifically on the food industry and healthcare analytics, it serves as a single source for multidisciplinary information involving AI and vision techniques in the food and health sector. Current advances such as Industry 4.0 and Fog-Cloud based solutions are covered in full, offering readers a fully rounded view of these rapidly advancing health and food analysis systems.
Computational Intelligence and Mathematical Applications

It is with great pleasure to present the proceedings of the International Conference on Computational Intelligence and Mathematical Applications (ICCIMA 2023), held on 21-22 December 2023, at Panipat Institute of Engineering and Technology, Panipat. This conference brought scholars, researchers, professionals, and intellectuals together from diverse fields to exchange ideas, share insights, and foster collaborations in Optimization, Computational Intelligence and Mathematical Applications. The ICCIMA 2023 served as a platform for contributors to demonstrate their latest findings, discuss emerging trends, and explore innovations to the problems that different disciplines are currently experiencing. The conference’s scope and depth of themes reflect our community’s rich diversity of interests and levels of competence.
Primer to Neuromorphic Computing

Primer to Neuromorphic Computing highlights critical and ongoing research into the diverse applications of neuromorphic computing. It includes an overview of primary scientific concepts for the research topic of neuromorphic computing, such as neurons as computational units, artificial intelligence, machine learning, and neuromorphic models. It also discusses the fundamental design method and organization of neuromorphic architecture.Hardware for neuromorphic systems can be developed by exploiting the magnetic properties of different materials. These systems are more energy efficient and enable faster computation . Magnetic tunnel junctions and magnetic textures can be employed to act as neurons and synapses. Neuromorphic systems have general intelligence like humans as they can apply knowledge gained in one domain to other domains. - Discusses potential neuromorphic applications in computing - Presents current trends and models in neuromorphic computing and neural network hardware architectures - Shows the development of novel devices and hardware to enable neuromorphic computing - Offers information about computation and learning principles for neuromorphic systems - Provides information about Neuromorphic implementations of neurobiological learning algorithms - Discusses biologically inspired neuromorphic systems and devices (including adaptive bio interfacing and hybrid systems consisting of living matter and synthetic matter)