Ict And Data Sciences


Download Ict And Data Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ict And Data Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

ICT and Data Sciences


ICT and Data Sciences

Author: Archana Singh

language: en

Publisher: CRC Press

Release Date: 2022-05-15


DOWNLOAD





This book highlights the state-of-the-art research on data usage, security, and privacy in the scenarios of the Internet of Things (IoT), along with related applications using Machine Learning and Big Data technologies to design and make efficient Internet-compatible IoT systems. ICT and Data Sciences brings together IoT and Machine Learning and provides the careful integration of both, along with many examples and case studies. It illustrates the merging of two technologies while presenting basic to high-level concepts covering different fields and domains such as the Hospitality and Tourism industry, Smart Clothing, Cyber Crime, Programming, Communications, Business Intelligence, all in the context of the Internet of Things. The book is written for researchers and practitioners, working in Information Communication Technology and Computer Science.

Data Science and Big Data Analytics in Smart Environments


Data Science and Big Data Analytics in Smart Environments

Author: Marta Chinnici

language: en

Publisher: CRC Press

Release Date: 2021-07-28


DOWNLOAD





Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.

The Data Science Framework


The Data Science Framework

Author: Juan J. Cuadrado-Gallego

language: en

Publisher: Springer Nature

Release Date: 2020-10-01


DOWNLOAD





This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.