Hypo Analytic Structures


Download Hypo Analytic Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hypo Analytic Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hypo-Analytic Structures


Hypo-Analytic Structures

Author: François Treves

language: en

Publisher: Princeton University Press

Release Date: 2014-07-14


DOWNLOAD





In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations and delimits their supports. The contents of this book consist of many results accumulated in the last decade by the author and his collaborators, but also include classical results, such as the Newlander-Nirenberg theorem. The reader will find an elementary description of the FBI transform, as well as examples of its use. Treves extends the main approximation and uniqueness results to first-order nonlinear equations by means of the Hamiltonian lift. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136


Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136

Author: Paulo Cordaro

language: en

Publisher: Princeton University Press

Release Date: 2016-03-02


DOWNLOAD





In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-analytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure.

Multidimensional Complex Analysis and Partial Differential Equations


Multidimensional Complex Analysis and Partial Differential Equations

Author: Francois Treves

language: en

Publisher: American Mathematical Soc.

Release Date: 1997


DOWNLOAD





This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.