Hypernumbers And Extrafunctions


Download Hypernumbers And Extrafunctions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hypernumbers And Extrafunctions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hypernumbers and Extrafunctions


Hypernumbers and Extrafunctions

Author: Mark Burgin

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-05-16


DOWNLOAD





“Hypernumbers and Extrafunctions” presents a rigorous mathematical approach to operate with infinite values. First, concepts of real and complex numbers are expanded to include a new universe of numbers called hypernumbers which includes infinite quantities. This brief extends classical calculus based on real functions by introducing extrafunctions, which generalize not only the concept of a conventional function but also the concept of a distribution. Extrafucntions have been also efficiently used for a rigorous mathematical definition of the Feynman path integral, as well as for solving some problems in probability theory, which is also important for contemporary physics. This book introduces a new theory that includes the theory of distributions as a subtheory, providing more powerful tools for mathematics and its applications. Specifically, it makes it possible to solve PDE for which it is proved that they do not have solutions in distributions. Also illustrated in this text is how this new theory allows the differentiation and integration of any real function. This text can be used for enhancing traditional courses of calculus for undergraduates, as well as for teaching a separate course for graduate students.

Semitopological Vector Spaces


Semitopological Vector Spaces

Author: Mark Burgin

language: en

Publisher: CRC Press

Release Date: 2017-06-26


DOWNLOAD





This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.

Advances in Inequalities for Series


Advances in Inequalities for Series

Author: Sever Silvestru Dragomir

language: en

Publisher: Nova Publishers

Release Date: 2008


DOWNLOAD





This research monograph, deals with identities and inequalities relating to series and their application. This is the first volume of research monographs on advances in inequalities for series. All of the papers in this volume have been fully peer reviewed. Some papers in this volume appear in print for the first time, detailing many technical results and some other papers offer a review of a number of recently published results. The papers appear in author alphabetical order and not in mathematics subject classification. There are fifteen diverse papers in this volume each with its own speciality. An important issue in many applications of Probability Theory is finding an approximate measure of distance, or discrimination, between two probability distributions. A number of divergence measures for this purpose have been proposed.