Hypergraph Theory


Download Hypergraph Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hypergraph Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hypergraph Theory


Hypergraph Theory

Author: Alain Bretto

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.

Introduction to Graph and Hypergraph Theory


Introduction to Graph and Hypergraph Theory

Author: Vitaly Ivanovich Voloshin

language: en

Publisher:

Release Date: 2009


DOWNLOAD





This book is for math and computer science majors, for students and representatives of many other disciplines (like bioinformatics, for example) taking courses in graph theory, discrete mathematics, data structures, algorithms. It is also for anyone who wants to understand the basics of graph theory, or just is curious. No previous knowledge in graph theory or any other significant mathematics is required. The very basic facts from set theory, proof techniques and algorithms are sufficient to understand it; but even those are explained in the text. Structurally, the text is divided into two parts where Part II is the generalisation of Part I. The first part discusses the key concepts of graph theory with emphasis on trees, bipartite graphs, cycles, chordal graphs, planar graphs and graph colouring. The second part considers generalisations of Part I and discusses hypertrees, bipartite hypergraphs, hypercycles, chordal hypergraphs, planar hypergraphs and hypergraph colouring. There is an interaction between the parts and within the parts to show how ideas of generalisations work. The main point is to exhibit the ways of generalisations and interactions of mathematical concepts from the very simple to the most advanced. One of the features of this text is the duality of hypergraphs. This fundamental concept is missing in graph theory (and in its introductory teaching) because dual graphs are not properly graphs, they are hypergraphs. However, as Part II shows, the duality is a very powerful tool in understanding, simplifying and unifying many combinatorial relations; it is basically a look at the same structure from the opposite (vertices versus edges) point of view.

Hypergraphs


Hypergraphs

Author: C. Berge

language: en

Publisher: Elsevier

Release Date: 1984-05-01


DOWNLOAD





Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.