Hyperbolic Problems Theory Numerics Applications

Download Hyperbolic Problems Theory Numerics Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hyperbolic Problems Theory Numerics Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hyperbolic Problems: Theory, Numerics, Applications. Volume I

The present volume contains a selection of papers from the XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications (HYP2022), which was held on June 20-24, 2022 in Málaga (Spain). The goal of this series of conferences is to bring together scientists with interests in the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models. The chapters in this volume correspond to some of the plenary lectures and to selected contributions related to theoretical aspects.
Hyperbolic Problems: Theory, Numerics, Applications

Author: Michael Fey
language: en
Publisher: Springer Science & Business Media
Release Date: 1999-04-01
[Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.
Hyperbolic Problems: Theory, Numerics, Applications

Author: Thomas Y. Hou
language: en
Publisher: Springer Science & Business Media
Release Date: 2003-09-19
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.