Hybrid Particle Image Velocimetry With The Combination Of Cross Correlation And Optical Flow Method


Download Hybrid Particle Image Velocimetry With The Combination Of Cross Correlation And Optical Flow Method PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hybrid Particle Image Velocimetry With The Combination Of Cross Correlation And Optical Flow Method book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hybrid Particle Image Velocimetry with the Combination of Cross-correlation and Optical Flow Method


Hybrid Particle Image Velocimetry with the Combination of Cross-correlation and Optical Flow Method

Author: Mark Bradley Johnson

language: en

Publisher:

Release Date: 2016


DOWNLOAD





Particle Image Velocimetry (PIV) has been of relevant discussions lately as the equipment used to obtain temporally and spatially resolved flow fields have advanced rapidly. Despite these advancements, the accuracy of evaluating these images have yet to exceed expectations. Current techniques typically utilize one method, either correlation based (frequently) or optical flow (non-frequently), and both are vulnerable to specific conditions incorporated in the PIV images. Only through the combination of two methods, cross correlation and optical flow, can a technique benefit from the strengths of each method while concealing the flaws each individual method contains. The Hybrid Particle Image Velocimetry method utilizes the fairly unrestricted cross-correlation method, which can process images that contain particles with relatively large displacements, and the high resolution analysis of the Optical Flow method. Susceptible to large displacements, the Optical flow method is restricted to images with particularly small displacements. Combining the two methods requires the constraints set forth on the Optical flow method to be conserved. Meaning that the Cross-correlation results have to be manipulated into a form applicable for the Optical Flow method. Thus steps such as interpolation, shifting the image, and filtering the image are crucial for transitioning cross-correlation results to optical flow analysis. Validating the accuracy of the Hybrid method was conducted through standard PIV images that encompassed various parameters encountered in PIV. Each set of images were analyzed by the hybrid method and three other commonly-used correlation techniques in order to compare the hybrid method’s accuracy with current methods. Results confirmed that the Hybrid method is consistently more accurate than the other methods, especially near the boundaries. Additionally, for cases dealing with large particles or small displacement, the Hybrid method attains more accurate results.

Advanced Intelligent Computing Technology and Applications


Advanced Intelligent Computing Technology and Applications

Author: De-Shuang Huang

language: en

Publisher: Springer Nature

Release Date: 2024-08-01


DOWNLOAD





This 13-volume set LNCS 14862-14874 constitutes - in conjunction with the 6-volume set LNAI 14875-14880 and the two-volume set LNBI 14881-14882 - the refereed proceedings of the 20th International Conference on Intelligent Computing, ICIC 2024, held in Tianjin, China, during August 5-8, 2024. The total of 863 regular papers were carefully reviewed and selected from 2189 submissions. This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was "Advanced Intelligent Computing Technology and Applications". Papers that focused on this theme were solicited, addressing theories, methodologies, and applications in science and technology.

River Flow 2020


River Flow 2020

Author: Wim Uijttewaal

language: en

Publisher: CRC Press

Release Date: 2020-08-27


DOWNLOAD





Rivers form one of the lifelines in our society by providing essential services such as availability of fresh water, navigation, energy, ecosystem services, and flood conveyance. Because of this essential role, mankind has interfered continuously in order to benefit most and at the same time avoid adverse consequences such as flood risk and droughts. This has resulted in often highly engineered rivers with a narrow set of functions. In the last decades rivers are increasingly considered in a more holistic manner as a system with a multitude of interdependent processes. River research and engineering has therefore added to the river fundamentals also themes like ecohydraulics, consequences of climate change, and urbanisation. River Flow 2020 contains the contributions presented at the 10th conference on Fluvial Hydraulics, River Flow 2020, organised under the auspices of the Committee on Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). What should have been a lively physical gathering of researchers, students and practitioners, was converted into an online event as the COVID-19 pandemic hindered international travelling and large gatherings of people. Nevertheless, the fluvial hydraulics community showed their interest and to be very much alive with a high number of participations for such event. Since its first edition in 2002, in Louvain-la-Neuve, this series of conferences has found a large and loyal audience in the river research and engineering community while being also attractive to the new researchers and young professionals. This is highlighted by the large number of contributions applying for the Coleman award for young researchers, and also by the number of applications and attendants to the Master Classes which are aimed at young researchers and students. River Flow 2020 aims to provide an updated overview of the ongoing research in this wide range of topics, and contains five major themes which are focus of research in the fluvial environment: river fundamentals, the digital river, the healthy river, extreme events and rivers under pressure. Other highlights of River Flow 2020 include the substantial number of interdisciplinary subthemes and sessions of special interest. The contributions will therefore be of interest to academics in hydraulics, hydrology and environmental engineering as well as practitioners that would like to be updated about the newest findings and hot themes in river research and engineering.