Hybrid Competitive Learning Method Using The Fireworks Algorithm And Artificial Neural Networks

Download Hybrid Competitive Learning Method Using The Fireworks Algorithm And Artificial Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hybrid Competitive Learning Method Using The Fireworks Algorithm And Artificial Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hybrid Competitive Learning Method Using the Fireworks Algorithm and Artificial Neural Networks

This book focuses on the fields of neural networks, swarm optimization algorithms, clustering and fuzzy logic. This book describes a hybrid method with three different techniques of intelligence computation: neural networks, optimization algorithms and fuzzy logic. Within the neural network techniques, competitive neural networks (CNNs) are used, for the optimization algorithms technique, we used the fireworks algorithm (FWA), and in the area of fuzzy logic, the Type-1 Fuzzy Inference Systems (T1FIS) and the Interval Type-2 Fuzzy Inference Systems (IT2FIS) were used, with their variants of Mamdani and Sugeno type, respectively. FWA was adapted for data clustering with the goal to help of competitive neural network to find the optimal number of neurons. It is important to mention that two variants were applied to the FWA: dynamically adjust of parameters with Type-1 Fuzzy Logic (FFWA) as the first one and Interval Type-2 (F2FWA) as the second one. Subsequently, based on the outputs of the CNN and with the goal of classification data, we designed Type-1 and Interval Type-2 Fuzzy Inference Systems of Mamdani and Sugeno type. This book is intended to be a reference for scientists and engineers interested in applying a different metaheuristic or an artificial neural network in order to solve optimization and applied fuzzy logic techniques for solving problems in clustering and classification data. This book is also used as a reference for graduate courses like the following: soft computing, swarm optimization algorithms, clustering data, fuzzy classify and similar ones. We consider that this book can also be used to get novel ideas for new lines of research, new techniques of optimization or to continue the lines of the research proposed by the authors of the book.
Hybrid Competitive Learning Method Using the Fireworks Algorithm and Artificial Neural Networks

This book focuses on the fields of neural networks, swarm optimization algorithms, clustering and fuzzy logic. This book describes a hybrid method with three different techniques of intelligence computation: neural networks, optimization algorithms and fuzzy logic. Within the neural network techniques, competitive neural networks (CNNs) are used, for the optimization algorithms technique, we used the fireworks algorithm (FWA), and in the area of fuzzy logic, the Type-1 Fuzzy Inference Systems (T1FIS) and the Interval Type-2 Fuzzy Inference Systems (IT2FIS) were used, with their variants of Mamdani and Sugeno type, respectively. FWA was adapted for data clustering with the goal to help of competitive neural network to find the optimal number of neurons. It is important to mention that two variants were applied to the FWA: dynamically adjust of parameters with Type-1 Fuzzy Logic (FFWA) as the first one and Interval Type-2 (F2FWA) as the second one. Subsequently, based on the outputs of the CNN and with the goal of classification data, we designed Type-1 and Interval Type-2 Fuzzy Inference Systems of Mamdani and Sugeno type. This book is intended to be a reference for scientists and engineers interested in applying a different metaheuristic or an artificial neural network in order to solve optimization and applied fuzzy logic techniques for solving problems in clustering and classification data. This book is also used as a reference for graduate courses like the following: soft computing, swarm optimization algorithms, clustering data, fuzzy classify and similar ones. We consider that this book can also be used to get novel ideas for new lines of research, new techniques of optimization or to continue the lines of the research proposed by the authors of the book.
Handbook of Research on Fireworks Algorithms and Swarm Intelligence

In recent years, swarm intelligence has become a popular computational approach among researchers working on optimization problems throughout the globe. Several algorithms inside swarm intelligence have been implemented due to their application to real-world issues and other advantages. A specific procedure, Fireworks Algorithm, is an emerging method that studies the explosion process of fireworks within local areas. Applications of this developing program are undiscovered, and research is necessary for scientists to fully understand the workings of this innovative system. The Handbook of Research on Fireworks Algorithms and Swarm Intelligence is a pivotal reference source that provides vital research on theory analysis, improvements, and applications of fireworks algorithm. While highlighting topics such as convergence rate, parameter applications, and global optimization analysis, this publication explores up-to-date progress on the specific techniques of this algorithm. This book is ideally designed for researchers, data scientists, mathematicians, engineers, software developers, postgraduates, and academicians seeking coverage on this evolutionary computation method.