Hybrid Advanced Optimization Methods With Evolutionary Computation Techniques In Energy Forecasting

Download Hybrid Advanced Optimization Methods With Evolutionary Computation Techniques In Energy Forecasting PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hybrid Advanced Optimization Methods With Evolutionary Computation Techniques In Energy Forecasting book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

This book is a printed edition of the Special Issue "Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting" that was published in Energies
Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, et cetera) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, et cetera) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy.
Intelligent Optimization Modelling in Energy Forecasting

Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent decades, many energy forecasting models have been continuously proposed to improve forecasting accuracy, including traditional statistical models (e.g., ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman filtering, Bayesian estimation models, etc.) and artificial intelligence models (e.g., artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation models, support vector regression, etc.). Recently, due to the great development of optimization modeling methods (e.g., quadratic programming method, differential empirical mode method, evolutionary algorithms, meta-heuristic algorithms, etc.) and intelligent computing mechanisms (e.g., quantum computing, chaotic mapping, cloud mapping, seasonal mechanism, etc.), many novel hybrid models or models combined with the above-mentioned intelligent-optimization-based models have also been proposed to achieve satisfactory forecasting accuracy levels. It is important to explore the tendency and development of intelligent-optimization-based modeling methodologies and to enrich their practical performances, particularly for marine renewable energy forecasting.