Hvdc Grids


Download Hvdc Grids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hvdc Grids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

HVDC Grids


HVDC Grids

Author: Dirk Van Hertem

language: en

Publisher: John Wiley & Sons

Release Date: 2016-02-09


DOWNLOAD





This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. Presents the technology of the future offshore and HVDC grid Explains how offshore and HVDC grids can be integrated in the existing power system Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection.

High Voltage Direct Current Transmission


High Voltage Direct Current Transmission

Author: Dragan Jovcic

language: en

Publisher: John Wiley & Sons

Release Date: 2019-07-01


DOWNLOAD





Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.

Multi-terminal Direct-Current Grids


Multi-terminal Direct-Current Grids

Author: Nilanjan Chaudhuri

language: en

Publisher: John Wiley & Sons

Release Date: 2014-09-09


DOWNLOAD





A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.