Human Centric Visual Analysis With Deep Learning


Download Human Centric Visual Analysis With Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Human Centric Visual Analysis With Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Human Centric Visual Analysis with Deep Learning


Human Centric Visual Analysis with Deep Learning

Author: Liang Lin

language: en

Publisher: Springer Nature

Release Date: 2019-11-13


DOWNLOAD





This book introduces the applications of deep learning in various human centric visual analysis tasks, including classical ones like face detection and alignment and some newly rising tasks like fashion clothing parsing. Starting from an overview of current research in human centric visual analysis, the book then presents a tutorial of basic concepts and techniques of deep learning. In addition, the book systematically investigates the main human centric analysis tasks of different levels, ranging from detection and segmentation to parsing and higher-level understanding. At last, it presents the state-of-the-art solutions based on deep learning for every task, as well as providing sufficient references and extensive discussions. Specifically, this book addresses four important research topics, including 1) localizing persons in images, such as face and pedestrian detection; 2) parsing persons in details, such as human pose and clothing parsing, 3) identifying and verifying persons, such as face and human identification, and 4) high-level human centric tasks, such as person attributes and human activity understanding. This book can serve as reading material and reference text for academic professors / students or industrial engineers working in the field of vision surveillance, biometrics, and human-computer interaction, where human centric visual analysis are indispensable in analysing human identity, pose, attributes, and behaviours for further understanding.

Smart Applications and Data Analysis


Smart Applications and Data Analysis

Author: Mohamed Hamlich

language: en

Publisher: Springer Nature

Release Date: 2020-06-04


DOWNLOAD





This volume constitutes refereed proceedings of the Third International Conference on Smart Applications and Data Analysis, SADASC 2020, held in Marrakesh, Morocco. Due to the COVID-19 pandemic the conference has been postponed to June 2020. The 24 full papers and 3 short papers presented were thoroughly reviewed and selected from 44 submissions. The papers are organized according to the following topics: ontologies and meta modeling; cyber physical systems and block-chains; recommender systems; machine learning based applications; combinatorial optimization; simulations and deep learning.

Learning Control


Learning Control

Author: Dan Zhang

language: en

Publisher: Elsevier

Release Date: 2020-12-05


DOWNLOAD





Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots