How To Think About Algorithms

Download How To Think About Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get How To Think About Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
How to Think About Algorithms

Author: Jeff Edmonds
language: en
Publisher: Cambridge University Press
Release Date: 2008-05-19
This textbook, for second- or third-year students of computer science, presents insights, notations, and analogies to help them describe and think about algorithms like an expert, without grinding through lots of formal proof. Solutions to many problems are provided to let students check their progress, while class-tested PowerPoint slides are on the web for anyone running the course. By looking at both the big picture and easy step-by-step methods for developing algorithms, the author guides students around the common pitfalls. He stresses paradigms such as loop invariants and recursion to unify a huge range of algorithms into a few meta-algorithms. The book fosters a deeper understanding of how and why each algorithm works. These insights are presented in a careful and clear way, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.
How to Think About Algorithms

Author: Jeff Edmonds
language: en
Publisher: Cambridge University Press
Release Date: 2008-05-19
There are many algorithm texts that provide lots of well-polished code and proofs of correctness. This book is not one of them. Instead, this book presents insights, notations, and analogies to help the novice describe and think about algorithms like an expert. By looking at both the big picture and easy step-by-step methods for developing algorithms, the author helps students avoid the common pitfalls. He stresses paradigms such as loop invariants and recursion to unify a huge range of algorithms into a few meta-algorithms. Part of the goal is to teach the students to think abstractly. Without getting bogged with formal proofs, the book fosters a deeper understanding of how and why each algorithm works. These insights are presented in a slow and clear manner accessible to second- or third-year students of computer science, preparing them to find their own innovative ways to solve problems.
Algorithmic Thinking

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?