Holomorphic Dynamics


Download Holomorphic Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Holomorphic Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Holomorphic Dynamics


Holomorphic Dynamics

Author: Xavier Gomez-Mont

language: en

Publisher: Springer

Release Date: 2006-11-14


DOWNLOAD





The objective of the meeting was to have together leading specialists in the field of Holomorphic Dynamical Systems in order to present their current reseach in the field. The scope was to cover iteration theory of holomorphic mappings (i.e. rational maps), holomorphic differential equations and foliations. Many of the conferences and articles included in the volume contain open problems of current interest. The volume contains only research articles.

Holomorphic Dynamical Systems


Holomorphic Dynamical Systems

Author: Nessim Sibony

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-07-31


DOWNLOAD





The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.

Progress in Holomorphic Dynamics


Progress in Holomorphic Dynamics

Author: Hartje Kriete

language: en

Publisher: CRC Press

Release Date: 1998-05-20


DOWNLOAD





In the last few decades, complex dynamical systems have received widespread public attention and emerged as one of the most active fields of mathematical research. Starting where other monographs in the subject end, Progress in Holomorphic Dynamics advances the theoretical aspects and recent results in complex dynamical systems, with particular emphasis on Siegel discs. Organized into four parts, the papers in this volume grew out of three workshops: two hosted by the Georg-August-Universität Göttingen and one at the "Mathematisches Forschungsinstitut Oberwolfach." Part I addresses linearization. The authors review Yoccoz's proof that the Brjuno condition is the optimal condition for linearizability of indifferent fixed points and offer a treatment of Perez-Marco's refinement of Yoccoz's work. Part II discusses the conditions necessary for the boundary of a Siegel disc to contain a critical point, builds upon Herman's work, and offers a survey of the state-of-the-art regarding the boundaries of Siegel discs. Part III deals with the topology of Julia sets with Siegel discs and contains a remarkable highlight: C.L. Petersen establishes the existence of Siegel discs of quadratic polynomials with a locally connected boundary. Keller, taking a different approach, explains the relations between locally connected "real Julia sets" with Siegel discs and the abstract concepts of kneading sequences and itineraries. Part IV closes the volume with four papers that review the different directions of present research in iteration theory. It includes discussions on the relations between commuting rational functions and their Julia sets, interactions between the iteration of polynomials and the iteration theory of entire transcendental functions, a deep analysis of the topology of the limbs of the Mandelbrot set, and an overview of complex dynamics in higher dimensions.