High Speed Dsp Circuits And Systems For 60 Ghz Wireless Communication

Download High Speed Dsp Circuits And Systems For 60 Ghz Wireless Communication PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Speed Dsp Circuits And Systems For 60 Ghz Wireless Communication book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High Speed DSP Circuits and Systems for 60 GHz Wireless Communication

The unlicensed 60 GHz band provides new opportunities for short ranged indoor Gb/s wireless communication applications. Compared with III-V semiconductor process technologies, nanometer CMOS based 60 GHz transceivers are attractive from the manufacturing cost and low power consumption point of view but these sensitive mm-Wave transceivers are highly susceptible to process variations thus they face a big challenge in achieving high yield performance. This suggests DSP based calibration circuits and algorithms to compensate for the performance loss due to process variations. In the first part of the dissertation, DSP based "Self-Healing" circuits and systems are presented to perform concurrent calibration on multiple RF transceiver parameters such as noise figure, image, transmitter IQ mismatch, and DC offset to optimize the 60 GHz CMOS transceiver performance. Digital baseband circuits applied to probe and measure the RF parameters such as direct digital frequency synthesizer, FFT based spectrum analyzer, and self-healing calibration controller will be discussed for a 4 Gb/s 60 GHz self-healing transceiver SOC in 65nm CMOS process. In the second part of the dissertation, the focus will be on the implementation aspects of a digital modem for a muti-Gb/s 60 GHz SOC radio. A 7 Gb/s OFDM/Single-Carrier frequency domain equalizer in 65 nm will be presented as an example. 4-parallel signal processing architecture allows this equalizer chip to achieve a symbol sampling rate of 1.76 GS/s while the core DSP circuits are clocked at 1/4 the input symbol rate. This equalizer chip is equipped with a 512pt FFT processor and a 512pt IFFT processor to demodulate the received OFDM and single-carrier signals. It includes a time domain Golay correlator based channel estimator to obtain the multipath channel impulse response, and it also includes a MMSE equalizer for channel correction in frequency domain.
60-GHz CMOS Phase-Locked Loops

Author: Hammad M. Cheema
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-06-22
Abstract This chapter lays the foundation for the work presented in latter chapters. The potential of 60 GHz frequency bands for high data rate wireless transfer is discussed and promising applications are enlisted. Furthermore, the challenges related to 60 GHz IC design are presented and the chapter concludes with an outline of the book. Keywords Wireless communication 60 GHz Millimeter wave integrated circuit design Phase-locked loop CMOS Communication technology has revolutionized our way of living over the last century. Since Marconi’s transatlantic wireless experiment in 1901, there has been tremendous growth in wireless communication evolving from spark-gap telegraphy to today’s mobile phones equipped with Internet access and multimedia capabilities. The omnipresence of wireless communication can be observed in widespread use of cellular telephony, short-range communication through wireless local area networks and personal area networks, wireless sensors and many others. The frequency spectrum from 1 to 6 GHz accommodates the vast majority of current wireless standards and applications. Coupled with the availability of low cost radio frequency (RF) components and mature integrated circuit (IC) techn- ogies, rapid expansion and implementation of these systems is witnessed. The downside of this expansion is the resulting scarcity of available bandwidth and allowable transmit powers. In addition, stringent limitations on spectrum and energy emissions have been enforced by regulatory bodies to avoid interference between different wireless systems.
Low-Power Wireless Communication Circuits and Systems

The increasing demand for extremely high-data-rate communications has urged researchers to develop new communication systems. Currently, wireless transmission with more than one Giga-bits-per-second (Gbps) data rates is becoming essential due to increased connectivity between different portable and smart devices. To realize Gbps data rates, millimeter-wave (MMW) bands around 60 GHz is attractive due to the availability of large bandwidth of 9 GHz. Recent research work in the Gbps data rates around 60 GHz band has focused on short-range indoor applications, such as uncompressed video transfer, high-speed file transfer between electronic devices, and communication to and from kiosk. Many of these applications are limited to 10 m or less, because of the huge free space path loss and oxygen absorption for 60 GHz band MMW signal. This book introduces new knowledge and novel circuit techniques to design low-power MMW circuits and systems. It also focuses on unlocking the potential applications of the 60 GHz band for high-speed outdoor applications. The innovative design application significantly improves and enables high-data-rate low-cost communication links between two access points seamlessly. The 60 GHz transceiver system-on-chip provides an alternative solution to upgrade existing networks without introducing any building renovation or external network laying works.