High Resolution X Ray Scattering


Download High Resolution X Ray Scattering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Resolution X Ray Scattering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

High-Resolution X-Ray Scattering


High-Resolution X-Ray Scattering

Author: Ullrich Pietsch

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-08-27


DOWNLOAD





During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.

X-Ray Optics


X-Ray Optics

Author: Yuri Shvyd'ko

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-06-25


DOWNLOAD





The generation of radiation with well-defined frequency and wavelength, and the ability to precisely determine these quantities, are of fundamental importance in physics and other natural sciences. Monochromatic radiation enables both very accurate structure determinations and studies of the dynamics of living and non-living matter. It is crucial for the realization of standards of time and length, for the determination of fundamental constants, and for many other aspects of basic research. Bragg backscattering from perfect crystals is a tool for creating, manipulating, and analyzing x-rays with highest spectral purity. It has the unique feature of selecting x-rays with narrow spectral bandwidth. This book describes the theoretical foundations and principles of x-ray crystal optics with high spectral resolution. Various experimental studies and applications are presented and the author also addresses the development of instrumentation, such as high-resolution x-ray monochromators, analyzers, wavelength meters, resonators, and interferometers. The book will be a valuable source of information for all students and researchers working in the field of x-ray optics.

High-Resolution X-Ray Scattering


High-Resolution X-Ray Scattering

Author: Ullrich Pietsch

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.