High Power Microwave Sources And Technologies Using Metamaterials

Download High Power Microwave Sources And Technologies Using Metamaterials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Power Microwave Sources And Technologies Using Metamaterials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High Power Microwave Sources and Technologies Using Metamaterials

Author: John W. Luginsland
language: en
Publisher: John Wiley & Sons
Release Date: 2021-12-21
Explore the latest research avenues in the field of high-power microwave sources and metamaterials A stand-alone follow-up to the highly successful High Power Microwave Sources and Technologies, the new High Power Microwave Sources and Technologies Using Metamaterials, demonstrates how metamaterials have impacted the field of high-power microwave sources and the new directions revealed by the latest research. It’s written by a distinguished team of researchers in the area who explore a new paradigm within which to consider the interaction of microwaves with material media. Providing contributions from multiple institutions that discuss theoretical concepts as well as experimental results in slow wave structure design, this edited volume also discusses how traditional periodic structures used since the 1940s and 1950s can have properties that, until recently, were attributed to double negative metamaterial structures. The book also includes: A thorough introduction to high power microwave oscillators and amplifiers, as well as how metamaterials can be introduced as slow wave structures and other components Comprehensive explorations of theoretical concepts in dispersion engineering for slow wave structure design, including multi-transmission line models and particle-in-cell code virtual prototyping models Practical discussions of experimental measurements in dispersion engineering for slow wave structure design In-depth examinations of passive and active components, as well as the temporal evolution of electromagnetic fields High Power Microwave Sources and Technologies Using Metamaterials is a perfect resource for graduate students and researchers in the areas of nuclear and plasma sciences, microwaves, and antennas.
High Power Microwave Sources and Technologies Using Metamaterials

Author: John W. Luginsland
language: en
Publisher: John Wiley & Sons
Release Date: 2021-11-30
Explore the latest research avenues in the field of high-power microwave sources and metamaterials A stand-alone follow-up to the highly successful High Power Microwave Sources and Technologies, the new High Power Microwave Sources and Technologies Using Metamaterials, demonstrates how metamaterials have impacted the field of high-power microwave sources and the new directions revealed by the latest research. It’s written by a distinguished team of researchers in the area who explore a new paradigm within which to consider the interaction of microwaves with material media. Providing contributions from multiple institutions that discuss theoretical concepts as well as experimental results in slow wave structure design, this edited volume also discusses how traditional periodic structures used since the 1940s and 1950s can have properties that, until recently, were attributed to double negative metamaterial structures. The book also includes: A thorough introduction to high power microwave oscillators and amplifiers, as well as how metamaterials can be introduced as slow wave structures and other components Comprehensive explorations of theoretical concepts in dispersion engineering for slow wave structure design, including multi-transmission line models and particle-in-cell code virtual prototyping models Practical discussions of experimental measurements in dispersion engineering for slow wave structure design In-depth examinations of passive and active components, as well as the temporal evolution of electromagnetic fields High Power Microwave Sources and Technologies Using Metamaterials is a perfect resource for graduate students and researchers in the areas of nuclear and plasma sciences, microwaves, and antennas.
High Power Microwaves

Following in the footsteps of its popular predecessors, High Power Microwaves, Fourth Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This fourth edition includes significant updates in every chapter as well as a new chapter on High Power Amplifiers. Written by a range of experimentalists, theorists, and applied theorists, the book offers complementary perspectives on different source types. The authors address: How HPM relates historically and technically to the conventional microwave field The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied How high power sources work, including their performance capabilities and limitations The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or potential users of microwaves will discover the advantages of the dramatically higher power levels that are being made available. Newcomers to the field can pursue further research. Decision makers in direct energy acquisition and related fields, such as radar, communications, and high-energy physics, can see how developments in HPM will affect them. Key Features Discusses the key criteria that must be fulfilled for emerging applications of HPMs in addition to the HPM formulary of practical equations for everyday work Describes the broad fundamental issues for each class of HPM sources and clarifies HPM capabilities and limitations on performance Uses a format suitable for classroom instruction with updated problems in each chapter alongside references and guidance to the literature for readers seeking more details. Solutions to the problems are available at [email protected].