High Performance Computing In Science And Engineering Munich 2004

Download High Performance Computing In Science And Engineering Munich 2004 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Performance Computing In Science And Engineering Munich 2004 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High Performance Computing in Science and Engineering, Munich 2004

Author: Siegfried Wagner
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-12-06
Leading-edge research groups in the field of scientific computing present their outstanding projects using the High Performance Computer in Bavaria (HLRB), Hitachi SR8000-F1, one of the top-level supercomputers for academic research in Germany. The projects address modelling and simulation in the disciplines Biosciences, Chemistry, Chemical Physics, Solid-State Physics, High-Energy Physics, Astrophysics, Geophysics, Computational Fluid Dynamics, and Computer Science. The authors describe their scientific background, their resource requirements with respect to top-level supercomputers, and their methods for efficient utilization of the costly high-performance computing power. Contributions of interdisciplinary research projects that have been supported by the Competence Network for Scientific High Performance Computing in Bavaria (KONWIHR) complete the broad range of supercomputer research and applications covered by this volume.
High Performance Computing in Science and Engineering, Garching 2004

Author: Arndt Bode
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-01-20
This volume of High Performance Computing in Science and Engineering is fully dedicated to the final report of KONWIHR, the Bavarian Competence Network for Technical and Scientific High Performance Computing. It includes the transactions of the final KONWIHR workshop, that was held at Technische Universität München, October 14-15, 2004, as well as additional reports of KONWIHR research groups. KONWIHR was established by the Bavarian State Government in order to support the broad application of high performance computing in science and technology throughout the country. KONWIHR is a supporting action to the installation of the German supercomputer Hitachi SR 8000 in the Leibniz Computing Center of the Bavarian Academy of Sciences. The report covers projects from basic research in computer science to develop tools for high performance computing as well as applications from biology, chemistry, electrical engineering, geology, mathematics, physics, computational fluid dynamics, materials science and computer science.
High Performance Computing in Science and Engineering, Garching/Munich 2007

Author: Siegfried Wagner
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-10-22
For the fourth time, the Leibniz Supercomputing Centre (LRZ) and the Com- tence Network for Technical, Scienti c High Performance Computing in Bavaria (KONWIHR) publishes the results from scienti c projects conducted on the c- puter systems HLRB I and II (High Performance Computer in Bavaria). This book reports the research carried out on the HLRB systems within the last three years and compiles the proceedings of the Third Joint HLRB and KONWIHR Result and Reviewing Workshop (3rd and 4th December 2007) in Garching. In 2000, HLRB I was the rst system in Europe that was capable of performing more than one Tera op/s or one billion oating point operations per second. In 2006 it was replaced by HLRB II. After a substantial upgrade it now achieves a peak performance of more than 62 Tera op/s. To install and operate this powerful system, LRZ had to move to its new facilities in Garching. However, the situation regarding the need for more computation cycles has not changed much since 2000. The demand for higher performance is still present, a trend that is likely to continue for the foreseeable future. Other resources like memory and disk space are currently in suf cient abundance on this new system.