High Performance Algorithms For Structured Matrix Problems

Download High Performance Algorithms For Structured Matrix Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Performance Algorithms For Structured Matrix Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High Performance Algorithms for Structured Matrix Problems

Comprises 10 contributions that summarize the state of the art in the areas of high performance solutions of structured linear systems and structured eigenvalue and singular-value problems. Topics covered range from parallel solvers for sparse or banded linear systems to parallel computation of eigenvalues and singular values of tridiagonal and bidiagonal matrices. Specific paper topics include: the stable parallel solution of general narrow banded linear systems; efficient algorithms for reducing banded matrices to bidiagonal and tridiagonal form; a numerical comparison of look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems; and parallel CG-methods automatically optimized for PC and workstation clusters. Annotation copyrighted by Book News, Inc., Portland, OR
Fast Algorithms for Structured Matrices

Author: Vadim Olshevsky
language: en
Publisher: American Mathematical Soc.
Release Date: 2003
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
Structured Matrices in Mathematics, Computer Science, and Engineering II

Author: Vadim Olshevsky
language: en
Publisher: American Mathematical Soc.
Release Date: 2001
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.