High Frequency Electromagnetic Scattering Prediction And Scattering Feature Extraction

Download High Frequency Electromagnetic Scattering Prediction And Scattering Feature Extraction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Frequency Electromagnetic Scattering Prediction And Scattering Feature Extraction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High Frequency Electromagnetic Scattering Prediction and Scattering Feature Extraction

Three related electromagnetic scattering problems, namely, high frequency electromagnetic (EM) ray tracing, scattering feature extraction, and inverse scattering are studied in this dissertation. New approaches are presented to advance the state of the art in each of the areas. The presented study in electromagnetic ray tracing leads to an alternative ray tracing algorithm which can outperform the traditional algorithms for complex targets. The performance of the proposed techniques demonstrates their potential application to the study of high-frequency EM scattering prediction. Second, a genetic algorithm (GA)-based algorithm with an adaptive-feeding technique is developed to simultaneously extract both scattering centers and resonances. Scattering feature extraction algorithms are then developed with the consideration of the visibility of scattering centers. Inverse scattering problems with strong multiple scattering effects are also studied. A GA-based method is presented to invert the shapes with multiple scattering effects. An approach combining hybrid GA with the tabu list idea are then developed to further improve the performance of the GA-based inversion algorithms.
Robust Adaptive Beamforming

The latest research and developments in robust adaptivebeamforming Recent work has made great strides toward devising robust adaptivebeamformers that vastly improve signal strength against backgroundnoise and directional interference. This dynamic technology hasdiverse applications, including radar, sonar, acoustics, astronomy,seismology, communications, and medical imaging. There are alsoexciting emerging applications such as smart antennas for wirelesscommunications, handheld ultrasound imaging systems, anddirectional hearing aids. Robust Adaptive Beamforming compiles the theories and work ofleading researchers investigating various approaches in onecomprehensive volume. Unlike previous efforts, these pioneeringstudies are based on theories that use an uncertainty set of thearray steering vector. The researchers define their theories,explain their methodologies, and present their conclusions. Methodspresented include: * Coupling the standard Capon beamformers with a spherical orellipsoidal uncertainty set of the array steering vector * Diagonal loading for finite sample size beamforming * Mean-squared error beamforming for signal estimation * Constant modulus beamforming * Robust wideband beamforming using a steered adaptive beamformerto adapt the weight vector within a generalized sidelobe cancellerformulation Robust Adaptive Beamforming provides a truly up-to-date resourceand reference for engineers, researchers, and graduate students inthis promising, rapidly expanding field.