High Dimensional Nonlinear Diffusion Stochastic Processes


Download High Dimensional Nonlinear Diffusion Stochastic Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Dimensional Nonlinear Diffusion Stochastic Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

High-dimensional Nonlinear Diffusion Stochastic Processes


High-dimensional Nonlinear Diffusion Stochastic Processes

Author: Yevgeny Mamontov

language: en

Publisher: World Scientific

Release Date: 2001


DOWNLOAD





This book is the first one devoted to high-dimensional (or large-scale) diffusion stochastic processes (DSPs) with nonlinear coefficients. These processes are closely associated with nonlinear Ito's stochastic ordinary differential equations (ISODEs) and with the space-discretized versions of nonlinear Ito's stochastic partial integro-differential equations. The latter models include Ito's stochastic partial differential equations (ISPDEs).The book presents the new analytical treatment which can serve as the basis of a combined, analytical-numerical approach to greater computational efficiency in engineering problems. A few examples discussed in the book include: the high-dimensional DSPs described with the ISODE systems for semiconductor circuits; the nonrandom model for stochastic resonance (and other noise-induced phenomena) in high-dimensional DSPs; the modification of the well-known stochastic-adaptive-interpolation method by means of bases of function spaces; ISPDEs as the tool to consistently model non-Markov phenomena; the ISPDE system for semiconductor devices; the corresponding classification of charge transport in macroscale, mesoscale and microscale semiconductor regions based on the wave-diffusion equation; the fully time-domain nonlinear-friction aware analytical model for the velocity covariance of particle of uniform fluid, simple or dispersed; the specific time-domain analytics for the long, non-exponential “tails” of the velocity in case of the hard-sphere fluid.These examples demonstrate not only the capabilities of the developed techniques but also emphasize the usefulness of the complex-system-related approaches to solve some problems which have not been solved with the traditional, statistical-physics methods yet. From this veiwpoint, the book can be regarded as a kind of complement to such books as “Introduction to the Physics of Complex Systems. The Mesoscopic Approach to Fluctuations, Nonlinearity and Self-Organization” by Serra, Andretta, Compiani and Zanarini, “Stochastic Dynamical Systems. Concepts, Numerical Methods, Data Analysis” and “Statistical Physics: An Advanced Approach with Applications” by Honerkamp which deal with physics of complex systems, some of the corresponding analysis methods and an innovative, stochastics-based vision of theoretical physics.To facilitate the reading by nonmathematicians, the introductory chapter outlines the basic notions and results of theory of Markov and diffusion stochastic processes without involving the measure-theoretical approach. This presentation is based on probability densities commonly used in engineering and applied sciences.

High-dimensional Nonlinear Diffusion Stochastic Processes


High-dimensional Nonlinear Diffusion Stochastic Processes

Author: Yevgeny Mamontov

language: en

Publisher: World Scientific

Release Date: 2001


DOWNLOAD





Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations.The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided

Computational Methods For Pde In Mechanics (With Cd-rom)


Computational Methods For Pde In Mechanics (With Cd-rom)

Author: Berardino D'acunto

language: en

Publisher: World Scientific Publishing Company

Release Date: 2004-10-12


DOWNLOAD





This book provides a good introduction to modern computational methods for Partial Differential Equations in Mechanics. Finite-difference methods for parabolic, hyperbolic as well as elliptic partial differential equations are discussed.A gradual and inductive approach to the numerical concepts has been used, such that the presentation of the theory is easily accessible to upper-level undergraduate and graduate students. Special attention has been given to the applications, with many examples and exercises provided along with solutions. For each type of equation, physical models are carefully derived and presented in full details.Windows programs developed in C++ language have been included in the accompanying CD-ROM. These programs can be easily modified to solve different problems, and the reader is encouraged to take full advantage of the innovative features of this powerful development tool.