High Dimensional Knot Theory

Download High Dimensional Knot Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Dimensional Knot Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High-dimensional Knot Theory

Author: Andrew Ranicki
language: en
Publisher: Springer Science & Business Media
Release Date: 1998-08-06
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
High-dimensional Knot Theory

Author: Andrew Ranicki
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
Knot Theory

Author: Charles Livingston
language: en
Publisher: American Mathematical Soc.
Release Date: 1993-12-31
Knot Theory, a lively exposition of the mathematics of knotting, will appeal to a diverse audience from the undergraduate seeking experience outside the traditional range of studies to mathematicians wanting a leisurely introduction to the subject. Graduate students beginning a program of advanced study will find a worthwhile overview, and the reader will need no training beyond linear algebra to understand the mathematics presented. The interplay between topology and algebra, known as algebraic topology, arises early in the book when tools from linear algebra and from basic group theory are introduced to study the properties of knots. Livingston guides readers through a general survey of the topic showing how to use the techniques of linear algebra to address some sophisticated problems, including one of mathematics's most beautiful topics—symmetry. The book closes with a discussion of high-dimensional knot theory and a presentation of some of the recent advances in the subject—the Conway, Jones, and Kauffman polynomials. A supplementary section presents the fundamental group which is a centerpiece of algebraic topology.