High Dimensional Econometrics And Identification

Download High Dimensional Econometrics And Identification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Dimensional Econometrics And Identification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High-dimensional Econometrics And Identification

In many applications of econometrics and economics, a large proportion of the questions of interest are identification. An economist may be interested in uncovering the true signal when the data could be very noisy, such as time-series spurious regression and weak instruments problems, to name a few. In this book, High-Dimensional Econometrics and Identification, we illustrate the true signal and, hence, identification can be recovered even with noisy data in high-dimensional data, e.g., large panels. High-dimensional data in econometrics is the rule rather than the exception. One of the tools to analyze large, high-dimensional data is the panel data model.High-Dimensional Econometrics and Identification grew out of research work on the identification and high-dimensional econometrics that we have collaborated on over the years, and it aims to provide an up-todate presentation of the issues of identification and high-dimensional econometrics, as well as insights into the use of these results in empirical studies. This book is designed for high-level graduate courses in econometrics and statistics, as well as used as a reference for researchers.
Partial Identification in Econometrics and Related Topics

This book covers data processing techniques, with economic and financial application being the unifying theme. To make proper investments in economy, the authors need to have a good understanding of the future trends: how will demand change, how will prices change, etc. In general, in science, the usual way to make predictions is: to identify a model that best fits the current dynamics, and to use this model to predict the future behavior. In many practical situations—especially in economics—our past experiences are limited. As a result, the authors can only achieve a partial identification. It is therefore important to be able to make predictions based on such partially identified models—which is the main focus of this book. This book emphasizes partial identification techniques, but it also describes and uses other econometric techniques, ranging from more traditional statistical techniques to more innovative ones such as game-theoretic approach, interval techniques, and machine learning. Applications range from general analysis of GDP growth, stock market, and consumer prices to analysis of specific sectors of economics (credit and banking, energy, health, labor, tourism, international trade) to specific issues affecting economy such as ecology, national culture, government regulations, and the existence of shadow economy. This book shows what has been achieved, but even more important are remaining open problems. The authors hope that this book will: inspire practitioners to learn how to apply state-of-the-art techniques, especially techniques of optimal transport statistics, to economic and financial problems, and inspire researchers to further improve the existing techniques and to come up with new techniques for studying economic and financial phenomena. The authors want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments. The publication of this book—and organization of the conference at which these papers were presented—was supported: by the Ho Chi Minh University of Banking (HUB), Vietnam, and by the Vingroup Innovation Foundation (VINIF). The authors thank the leadership and staff of HUB and VINIF for providing crucial support.
Handbook of Econometrics

Handbook of Econometrics, Volume 7A, examines recent advances in foundational issues and "hot" topics within econometrics, such as inference for moment inequalities and estimation of high dimensional models. With its world-class editors and contributors, it succeeds in unifying leading studies of economic models, mathematical statistics and economic data. Our flourishing ability to address empirical problems in economics by using economic theory and statistical methods has driven the field of econometrics to unimaginable places. By designing methods of inference from data based on models of human choice behavior and social interactions, econometricians have created new subfields now sufficiently mature to require sophisticated literature summaries. - Presents a broader and more comprehensive view of this expanding field than any other handbook - Emphasizes the connection between econometrics and economics - Highlights current topics for which no good summaries exist