Hierarchical Methods

Download Hierarchical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hierarchical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hierarchical Methods

Author: V. Kulish
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-11
Everybody is current in a world surrounded by computer. Computers determine our professional activity and penetrate increasingly deeper into our everyday life. Therein we also need increasingly refined c- puter technology. Sometimes we think that the next generation of c- puter will satisfy all our dreams, giving us hope that most of our urgent problems will be solved very soon. However, the future comes and il- sions dissipate. This phenomenon occurs and vanishes sporadically, and, possibly, is a fundamental law of our life. Experience shows that indeed ‘systematically remaining’ problems are mainly of a complex tech- logical nature (the creation of new generation of especially perfect - croschemes, elements of memory, etc. ). But let us note that amongst these problems there are always ones solved by our purely intellectual efforts alone. Progress in this direction does not require the invention of any ‘superchip’ or other similar elements. It is important to note that the results obtained in this way very often turn out to be more significant than the ‘fruits’ of relevant technological progress. The hierarchical asymptotic analytical–numerical methods can be - garded as results of such ‘purely intellectual efforts’. Their application allows us to simplify essentially computer calculational procedures and, consequently, to reduce the calculational time required. It is obvious that this circumstance is very attractive to any computer user.
The Reviewer's Guide to Quantitative Methods in the Social Sciences

The Reviewer’s Guide to Quantitative Methods in the Social Sciences is designed for evaluators of research manuscripts and proposals in the social and behavioral sciences, and beyond. Its thirty-one uniquely structured chapters cover both traditional and emerging methods of quantitative data analysis, which neither junior nor veteran reviewers can be expected to know in detail. The book updates readers on each technique’s key principles, appropriate usage, underlying assumptions, and limitations. It thereby assists reviewers to offer constructive commentary on works they evaluate, and also serves as an indispensable author’s reference for preparing sound research manuscripts and proposals. Key features include: The chapters cover virtually all of the popular classic and emerging quantitative techniques, thus helping reviewers to evaluate a manuscript’s methodological approach and its data analysis. In addition, the volume serves as an indispensable reference tool for those designing their own research. For ease of use, all chapters follow the same structure: the opening page of each chapter defines and explains the purpose of that statistical method the next one or two pages provide a table listing various criteria that should be considered when evaluating and applying that methodological approach to data analysis the remainder of each chapter contains numbered sections corresponding to the numbered criteria listed in the opening table. Each section explains the role and importance of that particular criterion. Chapters are written by methodological and applied scholars who are expert in the particular quantitative method being reviewed.
Data Mining, Southeast Asia Edition

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. - A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data - Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning - Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects - Complete classroom support for instructors at www.mkp.com/datamining2e companion site