Hierarchical Linear Models Applications And Data Analysis Methods

Download Hierarchical Linear Models Applications And Data Analysis Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hierarchical Linear Models Applications And Data Analysis Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hierarchical Linear Models

New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
Hierarchical Linear Models

Author: Anthony S. Bryk
language: en
Publisher: SAGE Publications, Incorporated
Release Date: 1992
Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
Hierarchical Linear Modeling

This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.