Health Monitoring Of Bridge Structures And Components Using Smart Structure Technology

Download Health Monitoring Of Bridge Structures And Components Using Smart Structure Technology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Health Monitoring Of Bridge Structures And Components Using Smart Structure Technology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Structural Sensing, Health Monitoring, and Performance Evaluation

Structural health monitoring (SHM) uses one or more in situ sensing systems placed in or around a structure, providing real-time evaluation of its performance and ultimately preventing structural failure. Although most commonly used in civil engineering, such as in roads, bridges, and dams, SHM is now finding applications in other engineering envir
Feasibility Study for a Freeway Corridor Infrastructure Health Monitoring (HM) Instrumentation Testbed

This research report discusses the planning necessary for the proper development, acquisition, installation, and maintenance of an effective health monitoring network for transportation infrastructure systems. A comprehensive literature search was conducted, and the materials were compiled into a database, reviewed, and synthesized. Data elements vital for maintaining safe and functional transportation infrastructures were identified and discussed for bridge structures, pavements, and geotechnical structures. Moreover, the steps necessary for planning an instrumentation system for a particular structure are presented. Sample design plans for the transportation infrastructure systems that are typically constructed in Wisconsin were obtained from WisDOT, and suggested instrumentation plans were developed for these transportation systems. One of the objectives of the research project is to identify urban freeway construction projects that could efficiently serve as hosts for an infrastructure health monitoring (IHM) instrumentation testbed. Major current and near-future construction projects in Wisconsin were identified and critically evaluated to identify a candidate project to host the IHM testbed. Among the candidates, the Zoo Interchange reconstruction project is recommended for hosting the infrastructure health monitoring testbed. Cost estimates based on current market prices are provided for the instrumentation plans developed for IHM of bridge structures, pavements, and geotechnical structures. To provide an example of using IHM data in applications, archived data from the Marquette Interchange instrumentation project was used to develop vehicle wander patterns and load spectra data, both in the form needed to conduct a mechanistic appraisal of the pavement structure using the DARWin ME software. The research team designed and conducted an IHM survey of state highway agencies in the U.S. and Canada. The survey showed that 46 percent of state DOTs have implemented health monitoring applications for transportation infrastructure. The survey also identified the impediments facing state DOTs in implementing IHM systems.