Harmonic Analysis Method For Nonlinear Evolution Equations I


Download Harmonic Analysis Method For Nonlinear Evolution Equations I PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Harmonic Analysis Method For Nonlinear Evolution Equations I book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Harmonic Analysis Method for Nonlinear Evolution Equations


Harmonic Analysis Method for Nonlinear Evolution Equations

Author:

language: en

Publisher:

Release Date: 2011


DOWNLOAD





Harmonic Analysis Method for Nonlinear Evolution Equations, I


Harmonic Analysis Method for Nonlinear Evolution Equations, I

Author: Baoxiang Wang

language: en

Publisher: World Scientific

Release Date: 2011


DOWNLOAD





1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities -- 2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS -- 3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints -- 4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations -- 6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS -- 8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case

Harmonic Analysis Method For Nonlinear Evolution Equations, I


Harmonic Analysis Method For Nonlinear Evolution Equations, I

Author: Baoxiang Wang

language: en

Publisher: World Scientific

Release Date: 2011-08-10


DOWNLOAD





This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.