Hands On High Performance With Spring 5

Download Hands On High Performance With Spring 5 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On High Performance With Spring 5 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hands-On High Performance with Spring 5

Author: Chintan Mehta
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-06-12
A hands-on guide to creating, monitoring, and tuning a high performance Spring web application Key Features Understand common performance pitfalls and improve your application's performance Build and deploy strategies for complex applications using the microservice architecture Understand internals of JVM - the core of all Java Runtime Environments Book Description While writing an application, performance is paramount. Performance tuning for real-world applications often involves activities geared toward detecting bottlenecks. The recent release of Spring 5.0 brings major advancements in the rich API provided by the Spring framework, which means developers need to master its tools and techniques to achieve high performance applications. Hands-On High Performance with Spring 5 begins with the Spring framework's core features, exploring the integration of different Spring projects. It proceeds to evaluate various Spring specifications to identify those adversely affecting performance. You will learn about bean wiring configurations, aspect-oriented programming, database interaction, and Hibernate to focus on the metrics that help identify performance bottlenecks. You will also look at application monitoring, performance optimization, JVM internals, and garbage collection optimization. Lastly, the book will show you how to leverage the microservice architecture to build a high performance and resilient application. By the end of the book, you will have gained an insight into various techniques and solutions to build and troubleshoot high performance Spring-based applications. What you will learn Master programming best practices and performance improvement with bean wiring Analyze the performance of various AOP implementations Explore database interactions with Spring to optimize design and configuration Solve Hibernate performance issues and traps Leverage multithreading and concurrent programming to improve application performance Gain a solid foundation in JVM performance tuning using various tools Learn the key concepts of the microservice architecture and how to monitor them Perform Spring Boot performance tuning, monitoring, and health checks Who this book is for If you’re a Spring developer who’d like to build high performance applications and have more control over your application's performance in production and development, this book is for you. Some familiarity with Java, Maven, and Eclipse is necessary.
Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

Author: Anubhav Singh
language: en
Publisher: Packt Publishing Ltd
Release Date: 2020-04-06
Learn how to deploy effective deep learning solutions on cross-platform applications built using TensorFlow Lite, ML Kit, and Flutter Key FeaturesWork through projects covering mobile vision, style transfer, speech processing, and multimedia processingCover interesting deep learning solutions for mobileBuild your confidence in training models, performance tuning, memory optimization, and neural network deployment through every projectBook Description Deep learning is rapidly becoming the most popular topic in the mobile app industry. This book introduces trending deep learning concepts and their use cases with an industrial and application-focused approach. You will cover a range of projects covering tasks such as mobile vision, facial recognition, smart artificial intelligence assistant, augmented reality, and more. With the help of eight projects, you will learn how to integrate deep learning processes into mobile platforms, iOS, and Android. This will help you to transform deep learning features into robust mobile apps efficiently. You’ll get hands-on experience of selecting the right deep learning architectures and optimizing mobile deep learning models while following an application oriented-approach to deep learning on native mobile apps. We will later cover various pre-trained and custom-built deep learning model-based APIs such as machine learning (ML) Kit through Firebase. Further on, the book will take you through examples of creating custom deep learning models with TensorFlow Lite. Each project will demonstrate how to integrate deep learning libraries into your mobile apps, right from preparing the model through to deployment. By the end of this book, you’ll have mastered the skills to build and deploy deep learning mobile applications on both iOS and Android. What you will learnCreate your own customized chatbot by extending the functionality of Google AssistantImprove learning accuracy with the help of features available on mobile devicesPerform visual recognition tasks using image processingUse augmented reality to generate captions for a camera feedAuthenticate users and create a mechanism to identify rare and suspicious user interactionsDevelop a chess engine based on deep reinforcement learningExplore the concepts and methods involved in rolling out production-ready deep learning iOS and Android applicationsWho this book is for This book is for data scientists, deep learning and computer vision engineers, and natural language processing (NLP) engineers who want to build smart mobile apps using deep learning methods. You will also find this book useful if you want to improve your mobile app’s user interface (UI) by harnessing the potential of deep learning. Basic knowledge of neural networks and coding experience in Python will be beneficial to get started with this book.
Mobile Artificial Intelligence Projects

Author: Karthikeyan NG
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-03-30
Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key FeaturesBuild practical, real-world AI projects on Android and iOSImplement tasks such as recognizing handwritten digits, sentiment analysis, and moreExplore the core functions of machine learning, deep learning, and mobile visionBook Description We’re witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learnExplore the concepts and fundamentals of AI, deep learning, and neural networksImplement use cases for machine vision and natural language processingBuild an ML model to predict car damage using TensorFlowDeploy TensorFlow on mobile to convert speech to textImplement GAN to recognize hand-written digitsDevelop end-to-end mobile applications that use AI principlesWork with popular libraries, such as TensorFlow Lite, CoreML, and PyTorchWho this book is for Mobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.