Hands On Generative Ai With Transformers And Diffusion Models Pdf Full

Download Hands On Generative Ai With Transformers And Diffusion Models Pdf Full PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Generative Ai With Transformers And Diffusion Models Pdf Full book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hands-On Generative AI with Transformers and Diffusion Models

Author: Omar Sanseviero
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2024-11-22
Learn to use generative AI techniques to create novel text, images, audio, and even music with this practical, hands-on book. Readers will understand how state-of-the-art generative models work, how to fine-tune and adapt them to their needs, and how to combine existing building blocks to create new models and creative applications in different domains. This go-to book introduces theoretical concepts followed by guided practical applications, with extensive code samples and easy-to-understand illustrations. You'll learn how to use open source libraries to utilize transformers and diffusion models, conduct code exploration, and study several existing projects to help guide your work. Build and customize models that can generate text and images Explore trade-offs between using a pretrained model and fine-tuning your own model Create and utilize models that can generate, edit, and modify images in any style Customize transformers and diffusion models for multiple creative purposes Train models that can reflect your own unique style
Generative AI Foundations in Python

Author: Carlos Rodriguez
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-07-26
Begin your generative AI journey with Python as you explore large language models, understand responsible generative AI practices, and apply your knowledge to real-world applications through guided tutorials Key Features Gain expertise in prompt engineering, LLM fine-tuning, and domain adaptation Use transformers-based LLMs and diffusion models to implement AI applications Discover strategies to optimize model performance, address ethical considerations, and build trust in AI systems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe intricacies and breadth of generative AI (GenAI) and large language models can sometimes eclipse their practical application. It is pivotal to understand the foundational concepts needed to implement generative AI. This guide explains the core concepts behind -of-the-art generative models by combining theory and hands-on application. Generative AI Foundations in Python begins by laying a foundational understanding, presenting the fundamentals of generative LLMs and their historical evolution, while also setting the stage for deeper exploration. You’ll also understand how to apply generative LLMs in real-world applications. The book cuts through the complexity and offers actionable guidance on deploying and fine-tuning pre-trained language models with Python. Later, you’ll delve into topics such as task-specific fine-tuning, domain adaptation, prompt engineering, quantitative evaluation, and responsible AI, focusing on how to effectively and responsibly use generative LLMs. By the end of this book, you’ll be well-versed in applying generative AI capabilities to real-world problems, confidently navigating its enormous potential ethically and responsibly.What you will learn Discover the fundamentals of GenAI and its foundations in NLP Dissect foundational generative architectures including GANs, transformers, and diffusion models Find out how to fine-tune LLMs for specific NLP tasks Understand transfer learning and fine-tuning to facilitate domain adaptation, including fields such as finance Explore prompt engineering, including in-context learning, templatization, and rationalization through chain-of-thought and RAG Implement responsible practices with generative LLMs to minimize bias, toxicity, and other harmful outputs Who this book is for This book is for developers, data scientists, and machine learning engineers embarking on projects driven by generative AI. A general understanding of machine learning and deep learning, as well as some proficiency with Python, is expected.
Generative AI with Python and PyTorch, Second Edition

Author: Joseph Babcock
language: en
Publisher: Packt Publishing Ltd
Release Date: 2025-03-28
Master GenAI techniques to create images and text using variational autoencoders (VAEs), generative adversarial networks (GANs), LSTMs, and large language models (LLMs) Key Features Implement real-world applications of LLMs and generative AI Fine-tune models with PEFT and LoRA to speed up training Expand your LLM toolbox with Retrieval Augmented Generation (RAG) techniques, LangChain, and LlamaIndex Purchase of the print or Kindle book includes a free eBook in PDF format Book Description Become an expert in Generative AI through immersive, hands-on projects that leverage today’s most powerful models for Natural Language Processing (NLP) and computer vision. Generative AI with Python and PyTorch is your end-to-end guide to creating advanced AI applications, made easy by Raghav Bali, a seasoned data scientist with multiple patents in AI, and Joseph Babcock, a PhD and machine learning expert. Through business-tested approaches, this book simplifies complex GenAI concepts, making learning both accessible and immediately applicable. From NLP to image generation, this second edition explores practical applications and the underlying theories that power these technologies. By integrating the latest advancements in LLMs, it prepares you to design and implement powerful AI systems that transform data into actionable intelligence. You’ll build your versatile LLM toolkit by gaining expertise in GPT-4, LangChain, RLHF, LoRA, RAG, and more. You’ll also explore deep learning techniques for image generation and apply styler transfer using GANs, before advancing to implement CLIP and diffusion models. Whether you’re generating dynamic content or developing complex AI-driven solutions, this book equips you with everything you need to harness the full transformative power of Python and AI. What will you learn Grasp the core concepts and capabilities of LLMs Craft effective prompts using chain-of-thought, ReAct, and prompt query language to guide LLMs toward your desired outputs Understand how attention and transformers have changed NLP Optimize your diffusion models by combining them with VAEs Build text generation pipelines based on LSTMs and LLMs Leverage the power of open-source LLMs, such as Llama and Mistral, for diverse applications Who this book is for This book is for data scientists, machine learning engineers, and software developers seeking practical skills in building generative AI systems. A basic understanding of math and statistics and experience with Python coding is required.