Hands On Artificial Intelligence On Amazon Web Services


Download Hands On Artificial Intelligence On Amazon Web Services PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Artificial Intelligence On Amazon Web Services book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Artificial Intelligence on Amazon Web Services


Hands-On Artificial Intelligence on Amazon Web Services

Author: Subhashini Tripuraneni

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-10-04


DOWNLOAD





Perform cloud-based machine learning and deep learning using Amazon Web Services such as SageMaker, Lex, Comprehend, Translate, and Polly Key FeaturesExplore popular machine learning and deep learning services with their underlying algorithmsDiscover readily available artificial intelligence(AI) APIs on AWS like Vision and Language ServicesDesign robust architectures to enable experimentation, extensibility, and maintainability of AI appsBook Description From data wrangling through to translating text, you can accomplish this and more with the artificial intelligence and machine learning services available on AWS. With this book, you’ll work through hands-on exercises and learn to use these services to solve real-world problems. You’ll even design, develop, monitor, and maintain machine and deep learning models on AWS. The book starts with an introduction to AI and its applications in different industries, along with an overview of AWS artificial intelligence and machine learning services. You’ll then get to grips with detecting and translating text with Amazon Rekognition and Amazon Translate. The book will assist you in performing speech-to-text with Amazon Transcribe and Amazon Polly. Later, you’ll discover the use of Amazon Comprehend for extracting information from text, and Amazon Lex for building voice chatbots. You will also understand the key capabilities of Amazon SageMaker such as wrangling big data, discovering topics in text collections, and classifying images. Finally, you’ll cover sales forecasting with deep learning and autoregression, before exploring the importance of a feedback loop in machine learning. By the end of this book, you will have the skills you need to implement AI in AWS through hands-on exercises that cover all aspects of the ML model life cycle. What you will learnGain useful insights into different machine and deep learning modelsBuild and deploy robust deep learning systems to productionTrain machine and deep learning models with diverse infrastructure specificationsScale AI apps without dealing with the complexity of managing the underlying infrastructureMonitor and Manage AI experiments efficientlyCreate AI apps using AWS pre-trained AI servicesWho this book is for This book is for data scientists, machine learning developers, deep learning researchers, and artificial intelligence enthusiasts who want to harness the power of AWS to implement powerful artificial intelligence solutions. A basic understanding of machine learning concepts is expected.

Hands-On Artificial Intelligence on Amazon Web Services


Hands-On Artificial Intelligence on Amazon Web Services

Author: Subhashini Tripuraneni

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-10-04


DOWNLOAD





Perform cloud-based machine learning and deep learning using Amazon Web Services such as SageMaker, Lex, Comprehend, Translate, and Polly Key FeaturesExplore popular machine learning and deep learning services with their underlying algorithmsDiscover readily available artificial intelligence(AI) APIs on AWS like Vision and Language ServicesDesign robust architectures to enable experimentation, extensibility, and maintainability of AI appsBook Description From data wrangling through to translating text, you can accomplish this and more with the artificial intelligence and machine learning services available on AWS. With this book, you’ll work through hands-on exercises and learn to use these services to solve real-world problems. You’ll even design, develop, monitor, and maintain machine and deep learning models on AWS. The book starts with an introduction to AI and its applications in different industries, along with an overview of AWS artificial intelligence and machine learning services. You’ll then get to grips with detecting and translating text with Amazon Rekognition and Amazon Translate. The book will assist you in performing speech-to-text with Amazon Transcribe and Amazon Polly. Later, you’ll discover the use of Amazon Comprehend for extracting information from text, and Amazon Lex for building voice chatbots. You will also understand the key capabilities of Amazon SageMaker such as wrangling big data, discovering topics in text collections, and classifying images. Finally, you’ll cover sales forecasting with deep learning and autoregression, before exploring the importance of a feedback loop in machine learning. By the end of this book, you will have the skills you need to implement AI in AWS through hands-on exercises that cover all aspects of the ML model life cycle. What you will learnGain useful insights into different machine and deep learning modelsBuild and deploy robust deep learning systems to productionTrain machine and deep learning models with diverse infrastructure specificationsScale AI apps without dealing with the complexity of managing the underlying infrastructureMonitor and Manage AI experiments efficientlyCreate AI apps using AWS pre-trained AI servicesWho this book is for This book is for data scientists, machine learning developers, deep learning researchers, and artificial intelligence enthusiasts who want to harness the power of AWS to implement powerful artificial intelligence solutions. A basic understanding of machine learning concepts is expected.

Learn Amazon SageMaker


Learn Amazon SageMaker

Author: Julien Simon

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-08-27


DOWNLOAD





Quickly build and deploy machine learning models without managing infrastructure, and improve productivity using Amazon SageMaker’s capabilities such as Amazon SageMaker Studio, Autopilot, Experiments, Debugger, and Model Monitor Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerAnalyze, detect, and receive alerts relating to various business problems using machine learning algorithms and techniquesImprove productivity by training and fine-tuning machine learning models in productionBook Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Become well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and NLP models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. Some understanding of machine learning concepts and the Python programming language will also be beneficial.