Hands On Ai Trading With Python Quantconnect And Aws

Download Hands On Ai Trading With Python Quantconnect And Aws PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Ai Trading With Python Quantconnect And Aws book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hands-On AI Trading with Python, QuantConnect and AWS

Master the art of AI-driven algorithmic trading strategies through hands-on examples, in-depth insights, and step-by-step guidance Hands-On AI Trading with Python, QuantConnect, and AWS explores real-world applications of AI technologies in algorithmic trading. It provides practical examples with complete code, allowing readers to understand and expand their AI toolbelt. Unlike other books, this one focuses on designing actual trading strategies rather than setting up backtesting infrastructure. It utilizes QuantConnect, providing access to key market data from Algoseek and others. Examples are available on the book's GitHub repository, written in Python, and include performance tearsheets or research Jupyter notebooks. The book starts with an overview of financial trading and QuantConnect's platform, organized by AI technology used: Examples include constructing portfolios with regression models, predicting dividend yields, and safeguarding against market volatility using machine learning packages like SKLearn and MLFinLab. Use principal component analysis to reduce model features, identify pairs for trading, and run statistical arbitrage with packages like LightGBM. Predict market volatility regimes and allocate funds accordingly. Predict daily returns of tech stocks using classifiers. Forecast Forex pairs' future prices using Support Vector Machines and wavelets. Predict trading day momentum or reversion risk using TensorFlow and temporal CNNs. Apply large language models (LLMs) for stock research analysis, including prompt engineering and building RAG applications. Perform sentiment analysis on real-time news feeds and train time-series forecasting models for portfolio optimization. Better Hedging by Reinforcement Learning and AI: Implement reinforcement learning models for hedging options and derivatives with PyTorch. AI for Risk Management and Optimization: Use corrective AI and conditional portfolio optimization techniques for risk management and capital allocation. Written by domain experts, including Jiri Pik, Ernest Chan, Philip Sun, Vivek Singh, and Jared Broad, this book is essential for hedge fund professionals, traders, asset managers, and finance students. Integrate AI into your next algorithmic trading strategy with Hands-On AI Trading with Python, QuantConnect, and AWS.
Hands-On AI Trading with Python, QuantConnect, and AWS

Master the art of AI-driven algorithmic trading strategies through hands-on examples, in-depth insights, and step-by-step guidance Hands-On AI Trading with Python, QuantConnect, and AWS explores real-world applications of AI technologies in algorithmic trading. It provides practical examples with complete code, allowing readers to understand and expand their AI toolbelt. Unlike other books, this one focuses on designing actual trading strategies rather than setting up backtesting infrastructure. It utilizes QuantConnect, providing access to key market data from Algoseek and others. Examples are available on the book's GitHub repository, written in Python, and include performance tearsheets or research Jupyter notebooks. The book starts with an overview of financial trading and QuantConnect's platform, organized by AI technology used: Examples include constructing portfolios with regression models, predicting dividend yields, and safeguarding against market volatility using machine learning packages like SKLearn and MLFinLab. Use principal component analysis to reduce model features, identify pairs for trading, and run statistical arbitrage with packages like LightGBM. Predict market volatility regimes and allocate funds accordingly. Predict daily returns of tech stocks using classifiers. Forecast Forex pairs' future prices using Support Vector Machines and wavelets. Predict trading day momentum or reversion risk using TensorFlow and temporal CNNs. Apply large language models (LLMs) for stock research analysis, including prompt engineering and building RAG applications. Perform sentiment analysis on real-time news feeds and train time-series forecasting models for portfolio optimization. Better Hedging by Reinforcement Learning and AI: Implement reinforcement learning models for hedging options and derivatives with PyTorch. AI for Risk Management and Optimization: Use corrective AI and conditional portfolio optimization techniques for risk management and capital allocation. Written by domain experts, including Jiri Pik, Ernest Chan, Philip Sun, Vivek Singh, and Jared Broad, this book is essential for hedge fund professionals, traders, asset managers, and finance students. Integrate AI into your next algorithmic trading strategy with Hands-On AI Trading with Python, QuantConnect, and AWS.
Generative AI for Trading and Asset Management

Expert guide on using AI to supercharge traders' productivity, optimize portfolios, and suggest new trading strategies Generative AI for Trading and Asset Management is an essential guide to understand how generative AI has emerged as a transformative force in the realm of asset management, particularly in the context of trading, due to its ability to analyze vast datasets, identify intricate patterns, and suggest complex trading strategies. Practically, this book explains how to utilize various types of AI: unsupervised learning, supervised learning, reinforcement learning, and large language models to suggest new trading strategies, manage risks, optimize trading strategies and portfolios, and generally improve the productivity of algorithmic and discretionary traders alike. These techniques converge into an algorithm to trade on the Federal Reserve chair's press conferences in real time. Written by Hamlet Medina, chief data scientist Criteo, and Ernie Chan, founder of QTS Capital Management and Predictnow.ai, this book explores topics including: How large language models and other machine learning techniques can improve productivity of algorithmic and discretionary traders from ideation, signal generations, backtesting, risk management, to portfolio optimization The pros and cons of tree-based models vs neural networks as they relate to financial applications. How regularization techniques can enhance out of sample performance Comprehensive exploration of the main families of explicit and implicit generative models for modeling high-dimensional data, including their advantages and limitations in model representation and training, sampling quality and speed, and representation learning. Techniques for combining and utilizing generative models to address data scarcity and enhance data augmentation for training ML models in financial applications like market simulations, sentiment analysis, risk management, and more. Application of generative AI models for processing fundamental data to develop trading signals. Exploration of efficient methods for deploying large models into production, highlighting techniques and strategies to enhance inference efficiency, such as model pruning, quantization, and knowledge distillation. Using existing LLMs to translate Federal Reserve Chair's speeches to text and generate trading signals. Generative AI for Trading and Asset Management earns a well-deserved spot on the bookshelves of all asset managers seeking to harness the ever-changing landscape of AI technologies to navigate financial markets.