Handbook Of Statistical Distributions With Applications


Download Handbook Of Statistical Distributions With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Statistical Distributions With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook of Statistical Distributions with Applications


Handbook of Statistical Distributions with Applications

Author: K. Krishnamoorthy

language: en

Publisher: CRC Press

Release Date: 2016-01-05


DOWNLOAD





Easy-to-Use Reference and Software for Statistical Modeling and TestingHandbook of Statistical Distributions with Applications, Second Edition provides quick access to common and specialized probability distributions for modeling practical problems and performing statistical calculations. Along with many new examples and results, this edition inclu

Statistical Distributions


Statistical Distributions

Author: Nick T. Thomopoulos

language: en

Publisher: Springer

Release Date: 2017-10-10


DOWNLOAD





This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.

Handbook of Beta Distribution and Its Applications


Handbook of Beta Distribution and Its Applications

Author: Arjun K. Gupta

language: en

Publisher: CRC Press

Release Date: 2004-06-21


DOWNLOAD





A milestone in the published literature on the subject, this first-ever Handbook of Beta Distribution and Its Applications clearly enumerates the properties of beta distributions and related mathematical notions. It summarizes modern applications in a variety of fields, reviews up-and-coming progress from the front lines of statistical research and practice, and demonstrates the applicability of beta distributions in fields such as economics, quality control, soil science, and biomedicine. The book discusses the centrality of beta distributions in Bayesian inference, the beta-binomial model and applications of the beta-binomial distribution, and applications of Dirichlet integrals.


Recent Search