Handbook Of Robust Low Rank And Sparse Matrix Decomposition


Download Handbook Of Robust Low Rank And Sparse Matrix Decomposition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Robust Low Rank And Sparse Matrix Decomposition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook of Robust Low-Rank and Sparse Matrix Decomposition


Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Author: Thierry Bouwmans

language: en

Publisher: CRC Press

Release Date: 2016-09-20


DOWNLOAD





Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Handbook of Robust Low-Rank and Sparse Matrix Decomposition


Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Author: Thierry Bouwmans

language: en

Publisher: CRC Press

Release Date: 2016-05-27


DOWNLOAD





Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Proceedings of 2017 Chinese Intelligent Systems Conference


Proceedings of 2017 Chinese Intelligent Systems Conference

Author: Yingmin Jia

language: en

Publisher: Springer

Release Date: 2017-09-27


DOWNLOAD





This book presents selected research papers from CISC’17, held in MudanJiang, China. The topics covered include Multi-agent system, Evolutionary Computation, Artificial Intelligence, Complex systems, Computation intelligence and soft computing, Intelligent control, Advanced control technology, Robotics and applications, Intelligent information processing, Iterative learning control, Machine Learning, and etc. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.