Handbook Of Multilevel Analysis


Download Handbook Of Multilevel Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Multilevel Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook of Multilevel Analysis


Handbook of Multilevel Analysis

Author: Jan Deleeuw

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-12-26


DOWNLOAD





Multilevel analysis is the statistical analysis of hierarchically and non-hierarchically nested data. The simplest example is clustered data, such as a sample of students clustered within schools. Multilevel data are especially prevalent in the social and behavioral sciences and in the bio-medical sciences. The models used for this type of data are linear and nonlinear regression models that account for observed and unobserved heterogeneity at the various levels in the data. This book presents the state of the art in multilevel analysis, with an emphasis on more advanced topics. These topics are discussed conceptually, analyzed mathematically, and illustrated by empirical examples. The authors of the chapters are the leading experts in the field. Given the omnipresence of multilevel data in the social, behavioral, and biomedical sciences, this book is useful for empirical researchers in these fields. Prior knowledge of multilevel analysis is not required, but a basic knowledge of regression analysis, (asymptotic) statistics, and matrix algebra is assumed.

The SAGE Handbook of Multilevel Modeling


The SAGE Handbook of Multilevel Modeling

Author: Marc A. Scott

language: en

Publisher: SAGE

Release Date: 2013-08-31


DOWNLOAD





In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Handbook of Advanced Multilevel Analysis


Handbook of Advanced Multilevel Analysis

Author: J. J. Hox

language: en

Publisher: Psychology Press

Release Date: 2011


DOWNLOAD





This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website--http://www.hlm-online.com. Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Market Information Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.