Handbook Of Digital Face Manipulation And Detection

Download Handbook Of Digital Face Manipulation And Detection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Digital Face Manipulation And Detection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Digital Face Manipulation and Detection

This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area.
Biometric Systems

Author: James L. Wayman
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-09-20
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
Python Data Science Handbook

Author: Jake VanderPlas
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2016-11-21
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms