Handbook Of Deep Learning Applications

Download Handbook Of Deep Learning Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Deep Learning Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Deep Learning Applications

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.
Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Author: Padmavathi Ganapathi
language: en
Publisher: IGI Global, Information Science Reference
Release Date: 2019-07-26
"This book explores the use of machine learning and deep learning applications in the areas of cyber security and cyber-attack handling mechanisms"--
Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.